TRAINING COURSES ON APPLIED ECONOMETRIC ANALYSIS (SUMMER SCHOOL) FOR YOUNG ECONOMISTS / RESEARCHERS 2016-2017

Basics of Probability theory

Farrukh Ataev 15 September 2016

Outline

Session 3 Sets and Basic probability concepts

- (Wed 14 Sept at 13:30-15:00)
- Session 4 Probability distributions (Discrete)
 - (Wed 14 Sept at 15:30-17:00)
- Session 1 Probability distributions (Continuous)
 - (Thu 15 Sept at 9:00-10:30)
- Session 2 Inferential statistics and Confidence intervals
 - (Thu 15 Sept at 11:00-12:30)

Session 2 Statistical inference and Confidence intervals

- Statistics
 - Descriptive and Inferential
- Sampling methods
- Central limit theorem
- Confidence intervals

Statistics

Science of collecting, organizing, presenting and interpreting data
 Population is a collection of all elements in a study
 Sample is a subset of the population

Statistics

- Descriptive (tabular, graphical and numerical methods to summarize data)
- Inferential (using sample data to make general conclusions (inferences) about population)

Sampling criteria

- Representative of population
- The goal is to use the results from sample to estimate the population, that is, the results of the sample are generalized to the population.

Sampling methods

Probability (random) (every unit of population has a certain probability of being selected)

- **Simple random** (number all and select from a hat)
- **Systematic** (select a starting point and every *k*th, sample size is n = N/k)
- Stratified (divide into strata (groups), randomly select proportionally from <u>each</u> stratum and combine them to form a full sample, each stratum is homogenous) (divide students into strata by gender, age, level)
- Cluster (divide into clusters (groups), randomly select <u>some</u> groups and all their members, each cluster is heterogenous)
- Non-probability (non-random) (some elements of population have no chance of selection, thus could be subject to bias)
 - **Convenience** (select from population easier to reach) (select the first n people who enter a store, people in a street, volunteers for a study)
 - Quota (divide into strata, non-randomly select proportionally from each stratum and combine them to form a full sample)
 - Purposive/Judgemental (select based on an expert's opinion)

Confidence interval

 The interval (margin) at which the population parameter is located around the sample statistic.

• The larger the sample size the more precise the estimate.

Example

A class consists of 50 students, of whom 20 are foreigners. The teacher held a questionnaire on study hours of a sample of 36 students (9 are foreigners) and obtained the following data:

3.2	2.5	2.7	5.1	4.1	3.5	2.8	2.5	3.3	3.9	4.4	3.6
3.0	2.9	2.6	3.1	3.2	3.4	2.4	2.5	2.8	2.7	3.8	6.2
4.3	1.5	1.8	2.8	3.2	3.3	3.7	2.9	2.8	4.8	5.2	3.0

From past research the teacher knows the standard deviation as 1.1.

- > What is the size of the population (or sample)?
- > What is the proportion of foreigners in population (or sample)?
- > What is the population mean (or SD) study time? $\mu = ?$ ($\sigma = 1.1$) (Descriptive statistics)
- > What is the sample mean (or SD) study time? $\bar{x} = 3.3$ (s = 1)
- > Can the sample mean time be generalized to the whole class? (Inferential statistics)
- > Find a) 90% b) 95% confidence interval of the population mean.

Example (cont.)

A class consists of 50 students, of whom 20 are foreigners. The teacher held a questionnaire on study hours of a sample of 36 students (9 are foreigners) and obtained the data above:

 $3.3 - ME \le \mu \le 3.3 + ME$

Example (cont.)

Find a) 90% b) 95% conf. interval of the population mean.

$$\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

Answer:
$$\bar{x} = 3.3$$
, $\sigma = 1.1$, $n = 36$
a) $1 - \alpha = 0.9 \Rightarrow \alpha = 0.1 \Rightarrow \alpha/2 = 0.05$.
 $z_{0.05} = NORM.S.INV(0.05) = -1.64$.
 $3.3 - 1.64 \cdot \frac{1.1}{6} \le \mu \le 3.3 + 1.64 \cdot \frac{1.1}{6} \Rightarrow 3 \le \mu \le 3.6$

b)
$$1 - \alpha = 0.95 \Rightarrow \alpha = 0.05 \Rightarrow \alpha/2 = 0.025.$$

 $z_{0.025} = NORM.S.INV(0.025) = -1.96.$
 $3.3 - 1.96 \cdot \frac{1.1}{6} \le \mu \le 3.3 + 1.96 \cdot \frac{1.1}{6} \Rightarrow 2.94 \le \mu \le 3.66$

Central Limit Theorem (for mean)

If a random sample of size *n* is drawn from a population with mean μ and standard deviation σ , the distribution of the sample mean \bar{x} approaches a normal distribution with mean μ and standard deviation σ/\sqrt{n} as the sample size increases.

2 properties:

- 1) If the population is **normal**, the sample mean has a normal distribution centered at μ , with a standard error equal to σ/\sqrt{n} .
- 2) If the population is **not normal**, the sample mean has more normal distribution centered at μ , with a standard error equal to σ/\sqrt{n} as the sample size increases (n≥30).

Exercise

We would like to estimate the mean amount of cash carried by executives in the hotel industry. We have a sample of size n=36, drawn from a normally distributed population with a known standard deviation σ = 4. The sample mean is 72.

- a) For a confidence level of 95%, calculate the margin of error.
- b) Calculate the width and the limits of the confidence interval for the unknown population mean.
- c) Interpret the interval.

Exercise solution

$$\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

Answer: $\bar{x} = 72, \sigma = 4, n = 36$

a) For a conf. level of 95%, calculate the margin of error.

$$1 - \alpha = 0.95 \Rightarrow \alpha = 0.05 \Rightarrow \alpha/2 = 0.025.$$

$$z_{0.025} = NORM.S.INV(0.025) = -1.96.$$

$$z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} = 1.96 \cdot \frac{4}{\sqrt{36}} = 1.31.$$

b) Calculate the width and the limits of the confidence interval for the unknown population mean.

$$72 - 1.31 \le \mu \le 72 + 1.31 \Rightarrow$$

 $70.69 \le \mu \le 73.31$

c) Interpret the interval.

Thank you