Regression analysis is concerned with the study of the *dependence* of one variable, the *dependent variable*, on one or more other variables, the *explanatory variables*, with a view of *estimating* and/or *predicting* the population *mean or average* values of the former in terms of the *known* or *fixed* (in repeated sampling) values of the latter.
Terminology and Notation

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Independent variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explained variable</td>
<td>Independent variable</td>
</tr>
<tr>
<td>Predictand</td>
<td>Predictor</td>
</tr>
<tr>
<td>Regressand</td>
<td>Regressor</td>
</tr>
<tr>
<td>Response</td>
<td>Stimulus</td>
</tr>
<tr>
<td>Endogenous</td>
<td>Exogenous</td>
</tr>
<tr>
<td>Outcome</td>
<td>Covariate</td>
</tr>
<tr>
<td>Controlled variable</td>
<td>Control variable</td>
</tr>
</tbody>
</table>
Conditional Mean

<table>
<thead>
<tr>
<th>Income</th>
<th>80</th>
<th>100</th>
<th>120</th>
<th>140</th>
<th>160</th>
<th>180</th>
<th>200</th>
<th>220</th>
<th>240</th>
<th>260</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
<td>55</td>
<td>65</td>
<td>79</td>
<td>80</td>
<td>102</td>
<td>110</td>
<td>120</td>
<td>135</td>
<td>137</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>70</td>
<td>84</td>
<td>93</td>
<td>107</td>
<td>115</td>
<td>136</td>
<td>137</td>
<td>145</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>74</td>
<td>90</td>
<td>95</td>
<td>110</td>
<td>120</td>
<td>140</td>
<td>140</td>
<td>155</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>80</td>
<td>94</td>
<td>103</td>
<td>116</td>
<td>130</td>
<td>144</td>
<td>152</td>
<td>165</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>85</td>
<td>98</td>
<td>108</td>
<td>118</td>
<td>135</td>
<td>145</td>
<td>157</td>
<td>175</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>113</td>
<td>125</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td>160</td>
<td>189</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>162</td>
<td></td>
<td>191</td>
</tr>
<tr>
<td>Total</td>
<td>325</td>
<td>462</td>
<td>445</td>
<td>707</td>
<td>678</td>
<td>750</td>
<td>685</td>
<td>1043</td>
<td>966</td>
<td>1211</td>
</tr>
<tr>
<td>Conditional mean</td>
<td>65</td>
<td>77</td>
<td>89</td>
<td>101</td>
<td>113</td>
<td>125</td>
<td>137</td>
<td>149</td>
<td>161</td>
<td>173</td>
</tr>
</tbody>
</table>
A population regression curve is simply the locus of the conditional means of the dependent variable for the fixed values of the explanatory variable(s).
Simple Regression

\[E(Y \mid X_i) = f(X_i) \]
Conditional Expectation Function (CEF)

Population Regression Function (PRF)

\[E(Y \mid X_i) = \beta_1 + \beta_2 X_i \]
Linear Population Regression Function
Regression Coefficients
Linear

\[Y = \beta_1 + \beta_2 X + \beta_3 X^2 \]

Linear in parameter functions

\[E(Y \mid X_i) = \beta_1 + \beta_2^2 X_i \]

Non-linear in parameter function

\[Y = e^{\beta_1 + \beta_2 X} \]
\[u_i = Y_i - E(Y \mid X_i) \quad \text{Stochastic error term} \]

\[Y_i = E(Y \mid X_i) + u_i \quad \text{Nonsystematic component} \]

\[Y_i = \beta_1 + \beta_2 X_i + u_i \quad \text{Systematic component} \]

\[E(Y_i \mid X_i) = E[E(Y \mid X_i)] + E(u_i \mid X_i) \]

\[= E(Y \mid X_i) + E(u_i \mid X_i) \]

\[E(u_i \mid X_i) = 0 \]
SRF1 vs SRF2

\[y = 0.5091x + 24.455 \]

\[y = 0.5761x + 17.17 \]

Weekly Income

Weekly Consumption

SRF1

SRF2

Dataset
Sample Regression Function

\[E(Y \mid X_i) = \beta_1 + \beta_2 X_i \quad \text{PRF} \]

\[\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i \quad \text{SRF} \]

\[Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + \hat{u}_i \]
Sample Regression Function

\[\hat{Y}_i = \beta_1 + \beta_2 X_i \]

\[E(Y \mid X_i) = \beta_1 + \beta_2 X_i \]
Assumptions.

- **Linearity.** The relationship between independent and dependent variable is linear.
- **Full Rank.** There is no exact relationship among any independent variables.
- **Exogeneity of independent variables.** The error term of the regression is not a function of independent variables.
- **Homoscedasticity and no Autocorrelation.** Error term of the regression is independently and normally distributed with zero means and constant variance.
- **Normality of Error term**
Ordinary Least Squares

\[Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + \hat{u}_i = \hat{Y}_i + \hat{u}_i \]

\[u_i = Y_i - \hat{Y}_i = Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i \]

\[\sum u_i = \sum (Y_i - \hat{Y}_i) \]

\[\sum u_i^2 = \sum (Y_i - \hat{Y}_i)^2 = \sum (Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i)^2 \]

\[\sum \hat{u}_i^2 = f(\hat{\beta}_1, \hat{\beta}_2) \]
Ordinary Least Squares

\[\sum u_i^2 = \sum Y_i^2 + n\hat{\beta}_1^2 + \hat{\beta}_2^2 \sum X_i^2 - 2\hat{\beta}_1 \sum Y_i - 2\hat{\beta}_2 \sum X_i Y_i + 2\hat{\beta}_1 \hat{\beta}_2 \sum X_i \]

\[\frac{\partial (\sum u_i^2)}{\partial \hat{\beta}_1} = 0 \quad \Rightarrow \quad 2n\hat{\beta}_1 - 2\sum Y_i + 2\hat{\beta}_2 \sum X_i = 0 \]

\[n\hat{\beta}_1 = \sum Y_i - \hat{\beta}_2 \sum X_i \]

\[\hat{\beta}_1 = \bar{Y} - \hat{\beta}_2 \bar{X} \]
Ordinary Least Squares

\[\sum u_i^2 = \sum Y_i^2 + n\beta_1^2 + \beta_2^2 \sum X_i^2 - 2\beta_1 \sum Y_i - 2\beta_2 \sum X_i Y_i + 2\beta_1\beta_2 \sum X_i \]

\[\frac{\partial (\sum u_i^2)}{\partial \beta_2} = 0 \quad \Rightarrow \quad 2\beta_2 \sum X_i^2 - 2 \sum X_i Y_i + 2\beta_1 \sum X_i = 0 \]

\[\beta_2 \sum X_i^2 - \sum X_i Y_i + \beta_1 \sum X_i = 0 \]

\[\beta_2 \sum X_i^2 - \sum X_i Y_i + (\bar{Y} - \beta_2 \bar{X}) \sum X_i = 0 \]

\[\beta_2 \sum X_i^2 - \sum X_i Y_i + (\bar{Y} - \beta_2 \bar{X}) n\bar{X} = 0 \]

\[\beta_2 \left(\sum X_i^2 - n\bar{X}^2 \right) = \sum X_i Y_i - n\bar{X}\bar{Y} \]

\[\beta_2 \left(\frac{1}{n} \sum X_i^2 - \bar{X}^2 \right) = \frac{1}{n} \sum X_i Y_i - \bar{X}\bar{Y} \]

\[\beta_2 \text{Var}(X) = \text{Cov}(X,Y) \quad \hat{\beta}_2 = \frac{\text{Cov}(X,Y)}{\text{Var}(X)} \]
Assumptions

Linear Regression Model

\[Y_i = \beta_1 + \beta_2 X_i + u_i \]

\(X \) is assumed to be nonstochastic.

Zero mean values of disturbance \(u_i \)

\[E(u_i \mid X_i) = 0 \]
Assumptions

Homoscedasticity or equal variance of u_i

$$\text{var}(u_i \mid X_i) = E[u_i - E(u_i \mid X_i)] = E(u_i^2 \mid X_i) = \sigma^2$$
Heteroscedasticity

\[\text{var}(u_i \mid X_i) = \sigma_i^2 \]
Assumptions

No autocorrelation between the disturbances

\[
\text{cov}(u_i, u_j \mid X_i, X_j) = E\{[u_i - E(u_i)] \mid X_i\}\{[u_j - E(u_j)] \mid X_i\}
\]

\[
= E(u_i \mid X_i)(u_j \mid X_j) = 0
\]

Exogeneity. Zero covariance between \(X_i\) and \(u_i\)

\[
\text{cov}(X_i, u_i) = 0
\]
Assumptions

The number of observations n should be greater than the number of parameters to be estimated k.

Variability in X values

The regression model is correctly specified.

There is no perfect multicollinearity.
Coefficient moments

Estimator

$$\hat{\beta}_2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} = \sum_{i=1}^{n} W_i (Y_i - \bar{Y}) = \sum_{i=1}^{n} W_i Y_i$$

$$W_i = \frac{(X_i - \bar{X})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

Note that $$\sum_{i=1}^{n} W_i = 0$$

True value

$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

$$\hat{\beta}_2 = \sum_{i=1}^{n} W_i Y_i = \sum_{i=1}^{n} W_i (\beta_1 + \beta_2 X_i + u_i) = \sum_{i=1}^{n} W_i \beta_1 + \sum_{i=1}^{n} W_i \beta_2 X_i + \sum_{i=1}^{n} W_i u_i = \beta_2 + \sum_{i=1}^{n} W_i u_i$$

$$\sum_{i=1}^{n} W_i X_i = \frac{\sum_{i=1}^{n} (X_i - \bar{X})X_i}{\sum_{j=1}^{n} (X_j - \bar{X})^2} = 1$$
Coefficient moments

\[E(\hat{\beta}) = E(\beta) + E\left(\sum_{i=1}^{n} W_i u_i \right) \]

\[E\left(\sum_{i=1}^{n} W_i u_i \right) = 0 \]

According to our “Exogenity” assumption. (Error term is independent from X variable.

Thus, OLS estimator is unbiased estimator.
Coefficient moments

\[\hat{\beta} = \beta + \sum_{i=1}^{n} W_i u_i \]

\[Var(\hat{\beta}) = E\left((\hat{\beta} - \beta)^2 \right) = E\left((\beta + \sum_{i=1}^{n} W_i u_i - \beta)^2 \right) = \]

\[E\left(\left(\sum_{i=1}^{n} W_i u_i \right)^2 \right) = E\left(\sum_{i=1}^{n} W_i^2 u_i^2 + 2 \sum_{i<j} W_i W_j u_i u_j \right) = \]

\[\sum_{i=1}^{n} W_i^2 E(u_i^2) + 2 \sum_{i<j} W_i W_j E(u_i u_j) \]

According to Homoscedasticity and no auto-correlation assumptions.
Coefficient moments

\[
E(u_i^2) = \sigma^2
\]

\[
E(u_i u_j) = 0
\]

\[
\sum_{i=1}^{n} W_i^2 = \frac{1}{\sum_{i=1}^{n} (X_i - \overline{X})^2}
\]

\[
Var(\hat{\beta}) = \frac{\sigma^2}{\sum_{i=1}^{n} (X_i - \overline{X})^2}
\]

According to Homoscedasticity and no auto-correlation assumptions.
Using similar argument

$$\text{var}(\hat{\beta}_2) = \frac{\sigma^2}{\sum (X_i - X)^2}$$

$$\text{STDEV}(\hat{\beta}_2) = \sqrt{\frac{\sigma^2}{\sum (X_i - X)^2}}$$

$$\text{STDEV}(\hat{\beta}_1) = \sqrt{\frac{\sum X_i^2}{n \sum (X_i - X)^2} \sigma^2}$$

$$\text{var}(\hat{\beta}_1) = \frac{\sum X_i^2}{n \sum (X_i - X)^2} \sigma^2$$

$$\text{cov}(\hat{\beta}_1, \hat{\beta}_2) = -\bar{X} \left(\frac{\sigma^2}{\sum (X_i - \bar{X})^2} \right)$$
BLUE estimator

\[E(\hat{\beta}_2) = \beta_2 \]

Sampling distribution of \(\hat{\beta}_2 \)
Goodness of Fit

\[\sum(Y_i - \bar{Y})^2 = \sum(\hat{Y}_i - \bar{Y})^2 + \sum \hat{u}_i^2 \]

\[TSS = ESS + RSS \]

\[1 = \frac{ESS}{TSS} + \frac{RSS}{TSS} \]

\[R^2 = \frac{\sum(\hat{Y}_i - \bar{Y})^2}{\sum(Y_i - \bar{Y})^2} \]
Goodness of Fit

$$\sum (y_i - \bar{y})^2 = \sum (\hat{y}_i - \bar{y})^2 + \sum \hat{u}_i$$

$$TSS = ESS + RSS$$

$$1 = \frac{ESS}{TSS} + \frac{RSS}{TSS}$$

$$R^2 = \frac{\sum (\hat{y}_i - \bar{y})^2}{\sum (y_i - \bar{y})^2}$$
Goodness of Fit

\[TSS = ESS + RSS \]

\[1 = \frac{ESS}{TSS} + \frac{RSS}{TSS} \]

\[R^2 = 1 - \frac{RSS}{TSS} \]

The \textit{R squared} increases if a regressor is added to the model. Why? Hint: Consider sum of squared residuals.

\[\overline{R}^2 = 1 - \frac{RSS / (N - k)}{TSS / (N - 1)} \]

\[\overline{R}^2 = 1 - (1 - R^2) \left(\frac{N - 1}{N - k} \right) \]
Confidence intervals

\[\hat{\beta}_1 \pm t_{\alpha/2}se(\hat{\beta}_1) \quad \hat{\beta}_2 \pm t_{\alpha/2}se(\hat{\beta}_2) \]

OLS estimates have \(t \)-distribution with \(n-k \) df, where \(k \) is the number of parameters.

\[\Pr[\hat{\beta}_2 - t_{\alpha/2}se(\hat{\beta}_2) \leq \beta_2 \leq \hat{\beta}_2 + t_{\alpha/2}se(\hat{\beta}_2)] = 1 - \alpha \]
Hypothesis Testing

In this lecture we will consider two cases

1. Hypotheses involving 1 coefficient (t-test)

2. Hypotheses involving 2 or more coefficients (F-test)
1. Hypotheses involving 1 coefficient
Examples:
For regression coefficient the hypothesis can be

\[H_0 : \beta_2 = b \]
\[H_a : \beta_2 \neq b \]

which is a two-sided test,
or it can be

\[H_0 : \beta_2 \geq b \]
\[H_a : \beta_2 < b \]

which is a one-sided test

Interpret these tests for \(b = 0 \)
Hypothesis Testing

Test statistics t which has t-distribution with df $n-k$

$$|t| = \left| \frac{\hat{\beta}_k - b}{se(\hat{\beta}_k)} \right|$$

If the Null hypothesis is not true, then t-statistic is likely to have a large absolute value.

If the absolute value of t-statistic is greater than its critical value we reject the Null hypothesis, otherwise we cannot.

The critical value can be looked up from the table for t-distribution’s critical values.

For two-sided test it is $t_{\alpha/2}$

For one-sided test it is t_{α}
Hypothesis Testing

Hypothesis involving 2 or more coefficients
The need for these kinds of tests arise when we estimate multiple regression models

\[Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \ldots + \beta_k X_{ki} + u_i \]

For example, the wage function

\[\text{wage}_i = \beta_0 + \beta_1 \text{educ}_i + \beta_2 \text{exp}_i + \beta_3 \text{gender}_i + \beta_4 \text{region}_i + u_i \]
Hypothesis Testing

Hypothesis involving 2 or more coefficients

\[H_0 : \beta_3 = 0, \beta_4 = 0 \]

\[H_a : \text{They are not both 0} \]

Technically we need to compare two models

\[
\text{wage}_i = \beta_0 + \beta_1 \text{educ}_i + \beta_2 \exp_i + \beta_3 \text{gender}_i + \beta_4 \text{region}_i + u_i
\]

which says that gender and region are important factors of wage

and \[
\text{wage}_i = \beta_0 + \beta_1 \text{educ}_i + \beta_2 \exp_i + u_i
\]

which says that they are not
Hypothesis Testing

Hypothesis involving 2 or more coefficients

Denote RSS_0 as the sum of squared errors for the first model (if the Null hypothesis is true)

Denote RSS_1 as the sum of squared errors for the second model (if the Null hypothesis is not true)

$$ F = \frac{(RSS_0 - RSS_1)/m}{RSS_1/(N-k)} $$

This F statistic has F-distribution with m df for the numerator and $N-k$ df of denominator, where m is the number of restrictions (the difference in the number of independent variables)

If $F > F_c$ then reject your Null hypothesis
Example 1.
Suppose you want to test that the marginal propensity to consume is less than 0.65
Based on 30 observations you estimated the simple regression model by OLS and obtained the results

\[\hat{\beta}_2 = 0.605, \quad t = \frac{0.605}{0.02} = 30.25 \]

Let the standard error of the slope be

\[se(\hat{\beta}_2) = 0.02 \]
Example 1 (continued)

Your hypothesis test is set up as

\[H_0 : \beta_2 \geq 0.65 \]
\[H_a : \beta_2 < 0.65 \]

The \(t \)-statistic is equal to

\[
|t| = \left| \frac{0.6 - 0.65}{0.02} \right| = 2.5
\]

Compare that with \(t_{0.05} = 1.701 \) with df = 28

The conclusion is that we reject the null.
Hypothesis testing

Example 2:
Suppose that you want to test that gender and age do not affect wage. Based on 50 observations you estimated the following wage function:

\[
\begin{aligned}
\hat{wage}_i & = 125.85 + 20.47 \text{educ}_i + 12.39 \exp_i + \\
& + 36.08 \text{gender}_i - 8.54 \text{age}_i + 45.12 \text{region}_i + \hat{u}_i
\end{aligned}
\]

Your hypothesis is set up as

\[H_a: \text{Both are not equal to zero}\]

\[H_0: \beta_3 = 0, \beta_4 = 0\]
Example 2 (continued)
Suppose that RSS of the unrestricted model (Null is not true) is 33.85 and RSS of the restricted model (Null is true) is 42.52, then F– statistic is

$$F = \frac{(42.52 - 33.85)/2}{33.85/44} = 5.64$$

The critical value for F– statistic with df 2 and 44 and 5% significance level is 3.34
Since our F– statistic is greater than the critical value then we reject the null.