Conditional Independence
- Matching and Regression
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A&P, p. 64: Good controls are variables that we can
think of as having been fixed at the time the regressor of
Interest was determined.




l' Definition of ATE and ATOT conditional on X

Let X denote a (vector of) observable explanatory variables

ATE(X)=EY, - Y, | X]
=E|Y, | X]-E[Y, | X]

ATOT(X)=E[Y,-Y, |D=1,X]
—E|Y,|D=1,X]-E|Y, |D=1,X]

Treatment effects for individuals with characteristics X.




l' Conditional and unconditional ATE and ATOT

Law of iterated expectations:

EXIE(YIX)] = E(Y)
Average Treatment Effect .~
ATE =E(Y,)-E(Y,) =E,JATE(X)]

= [ ATE(x)- f (x) dx

= :{E[Y1 | X = x]-E[Y, | X =x]}-f (x)dx

Average Treatment Effect on the Treated
ATOT =E(Y,|D=1)-E(Y,|D=1)

____________ = Exo[ATOT(X)|D = 1] = [ATOT(x)- () dx

Law of iterated

expectations: | = [{E[Y, |D=1,X=x]~E[Y, |D=1,X=x]}fp(x) dx
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l'ﬁ ATE(x), ATOT(x) and Regression Notation

Y, =E[Y, | X]+U, =y, (X)+U,
Y, =E[Y, | X]+ U, =y, (X)+ U,

ATE(X)=EL[Y, - Y, | X]=E[Y, | X|-E[Y, | X]
— “1(X)_|J0(X)
ATOT(X)=E[Y,-Y, |D=1,X|=E[Y, |D =1,X]-E|Y, |D=1,X]

= p,(X) — o (X)+E[U, -U, |D =1,X]
= p,(X) — o (X) +E[U, |D = 1,X]-E[U, | D =1,X]




" ATE(x), ATOT(x) and Regression Notation

Special Case: Linear relationships

Y, =EIY, | X]+U, = p,(X)+U, =, +B, X +U,

Y, =EIY, | XI+U, =, (X)+U, =a, +B, X +U,

ATE(X) = 1, (X) - 1, (X) = (@, — 0, ) + (B, — B, ) X

ATOT(X) = b, (X) = b (X) + E[U, -U, | D =1,X]
= ATE(X)+E|U, -U, |D =1,X]

— (o, —a,)+(B, —B,) X+E[U, -U, |D =1,X]




I'E ATE(x), ATOT(x) and Regression Notation

As a single equation:
Y=Y,-D+Y,-(1-D)
= Po(X) + [u,(X) s (X)]- D+ U, + (U, - U, )-D

Special case: Linear relationships
Y =, (X)+ [, (X) =1, (X)]- D+ U, + (U, - U, )- D
=a, +B, X+[(0(1 —a,)+ (B, —B,) X]-D+UO +(U,-U,)-D




.'E The Conditional Independence Assumption

Conditional Independence Assumption (CIA):

(Y,,Y,) are indepedent from D, conditional on X

Formally: (Y,,Y,) LD|X

This implies Mean Independence:

E

E

:Y1 |D:1’X]:E[Y1 |D:O’X]:E[Y1|X]

:Yo |D:O,X]:E[Yo |D:1,X]:E[Yo |X]




l' ATE and ATOT under conditional mean independence

Average Treatment Effect

ATE — E(Y1 ) - E(Yo ) @ Law of iterated expectations

(holds in general)

N EX[E(Y1 | X) (Y | X reqmres mean
_ EX[E(Y1 | D=1 ,X) Y | D = O X ] : independence
Average Treatment Effect on the Treated

ATOT =E(Y, |D=1)-E(Y, |D=1) @
:EX|D:1[E(Y1|D:1aX) Y |ID=1, X

= Eyou[E(Y, D =1,X)-E(Y, |D=0,X)]
=E(Y, |D =1)-Eyp4[E(Y, [D=0,X)]




l' ATE and ATOT under conditional mean independence

E[Y,|D=1,X]=E[Y, |D=0,X]=E[Y, | X]
E[Y, |D=0,X]=E[Y, |D=1,X]=E[Y, | X]

This implies
ATE(X)=ATOT(X)

E[Y, I X]-E[Y, | X] =E[Y,|D=1,X]-E[Y, [D=1,X]
However, in general ATE # ATOT. Why?

jATE(x)-@ x)dx = [ ATOT(x) o x) dx

Distributions of X in population and in D=1 group may differ
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I'E For ATOT, a weaker version of CIA is sufficient

ATOT =E(Y, |D =1)-E(Y, | D =1)

The 1st term can simply be estimated by Y, = — Z i
Ny viwith D

Using the law of iterated expectations for the 2nd term:
E(Yo | D = 1) — EX|D:1[E(YO | D=1 ,X)]
Hence, for ATOT mean independence for Y, is sufficient
E(Y,|D=1,X)=E(Y, |D=0,X)

Implying:
ATOT =E(Y, |D = 1)—EX|D:1[E(YO |D =0, X)]
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.'E Visualization of LIE and ATOT

D=0

D=

Grundgesamtheit

ATOT = E(Y |D _1

=E(Y,|D=1)-

1

A f(X)

f(x,) I

| ]

Xo

X4 X5

2 E(Y; ID=0,x)-f(x|D=1)

X0,X1,X2

EY,

D=0,%,)

f(xq |D=1)

E(Y,

D:O,x1) :

f(x,|D=1)

E(Y,

D=0,%,)

f(x, |[D=1)
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ﬂﬁ Which X? (1)

CIA: (Y,,Y,) LD|X=x; VxeX

This will be satisfied, if X contains all variables,
influencing potential outcomes (Y,,Y) and selection (D)
Into treatment.

The variables in X are "pre-treatment’, i.e. they may not
be affected by receiving (or not receiving) the treatment.

ATOT = E(Y1 |D = 1)_ ExlD:1 [E(Yo |D = O’X)]
o

EXID=1 [E(Yo |ID = O’X)] = IE[YO ID=1,X= X]' fXID=1(X)dX
/

Here, we use distribution of X among D=1, to get their counterfactual in the
absence of treatment. Won't work if distrribution of X is altered by treatment.
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l' CIA revisited

Conditional Independence Assumption (CIA):

(Y4,Y,) are indepedent from D, conditional on X
Formally: (Y,,Y,) LD|X

Hence
flY,|D=1,X
flY, |D=0,X

and in particular
P This identifying assumption can not be

E[Y,[D=1,X] directly tested because it involves
E[Y, | D =0, X]: counterfactual distributions
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ﬂﬁ CIA revisited (2)

Conditional Independence Assumption (CIA):
(Y4,Y,) are indepedent from D, conditional on X
Formally: (Y,,Y,)LD]|X

Independence is symmetric. That is, D is independent
from (Y,,Y,):

PD=1]Y,Y,X]=P[D=1]| X]

or equivalently

PD=1|U,U,,X]=P[D =1] X]

,Selection on the observables*

15



ﬂﬁ CIA revisited (3)

P[D =1

P[D =1

Y, Y, X]|=P
U,U,X|=P

D=1

D=1

X]
X]

Intuitively, this assumes that, conditioning on observable
covariates, we can take assignment to treatment to have
been random and that, in particular, unobservables play
no role in the treatment assignment; comparing two
iIndividuals with the same observable characteristics,
one of whom was treated and one of whom was not, is
like comparing those two individuals in a randomized

experiment.

Dehejia and Wahba (2002)
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l'E CIA revisited

PD=1]Y,Y, X]=P[D=1]| X]

PD=1|U,U,,X|]=P|D =1] X]

“From an economic standpoint, this assumption
rules out selection on the basis of unobservables
(U,,U,) that may be partially known to people taking
training but are unknown to the observing
economist. ... It defines an implicit model that
assumes that agents do not enter the program on
the basis of gains unobserved by analysts.”

(Heckman, Lalonde and Smith)
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l' CIA revisited

Propensity Score

Y,Y,,X]=P[D=1]| X]
U, U, X|=PD=1] X]
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I'E (When) Is the CIA plausible?

The conditional independence assumption that motivates
the use of regression and matching is most plausible
when researchers have extensive knowledge of the
process determining treatment status. An example in this
spirit is the Angrist (1998) study of the effect of voluntary
military service on the civilian earnings of soldiers after
discharge. .... The CIA seems plausible in this context
because soldiers are selected on the basis of a few well-
documented criteria related to age, schooling, and test
scores and because the control group also applied to
enter the military.

Joshua Ang rist (The New Palgrave, 2008)
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.' Common Support

ATE =E(Y,)-E(Y,) 5 .. .
= Ex[E(Y, 1D =1,X)~E(Y, |D =0,X)]
E[]isw.rtof(X) = .' f
Need to compute these for all X with f(X)>0
ATOT =E(Y, |D=1)-E(Y, D =1) o I+
:Ex|D=1[E(Y1 |D=1,X)~E(Y, |D=0,X)] o

= E(Y |D = 1)' EX|D:1[E(YO |ID = O,X)]
E[]is w.r.to f(X|D=1)— ™.
Need to compute thls for all X with f(X|D=1)>0

But what if, say, P(D=1|X)=0 for some X?
=» Can estimate ATE and ATOT only over “common support”
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I'E Common Support (lI)

Common support: all values of X for which

PD=1|X)<1
alternatively:

all values of X for which f(X|D=1)>0 and f(X|D=0)>0

Hence, with this approach, we can aim only for ATE and
ATOT over the common support

ATE . =E[Y,-Y,|0<P(D =1| X)<1]
ATOT., =E[Y,-Y,|D=1,PD=1| X)<1]
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Exploiting CIA
- Matching




I'E Estimating ATOT using CIA

Estimation by Stratification

Suppose X is discrete and can take on only the following

values: {X,...,X,.. g
Example: X = [X ‘ ]

X, Each combination of values
15 2 3_‘5 of X, and of X, forms a ,cell”
and (in a slight abuse of notation)
! X, X, X, a value of X (viewed as the collection of

X, and of X,). Hence, the
possible outcomes of X

9 | X; X @ are X, Xy, ..., Xg
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I'E Estimating ATOT using CIA

Estimation by Stratification

Suppose X is discrete and can take on only the following
values: {Xi,...,X ,...,Xy |

Let N, denote the number of treatment group
observations in the population with X=x,

and let n,, and n,, be similarly defined sample
ferquencies for treatment and control group members.
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I'E Estimating ATOT using CIA

Estimation by Stratification

X discrete with {X1,---,Xk,---,XK}

and N4, , n,, and ny be # of obs. with X=x, in resp. group

X, X,
15 2 35 1.5 2 3.5
7| X, X, X, 7N, N, N
X, 85/ x, x; x, X 85|N, N, N,
91 X, X, X, 9 [N, N, N,

population frequencies
in treatment group

X

1

X2
1.5 2 35
/7 |n, n, n,
85|/ n, n, n,
91 n, n, ng

sample frequencies

in treatment group
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l' Estimating ATOT using CIA

if N, s are not known,

Estimation by Stratification / use n.,s instead

k=1 § :
sum over all cells — 6 N1k

(all outcomes of X)

Z V0k :ni ZYOi

1k i:Dj=1"Xj=xk Ok i:Dj=0NXj=xk

5 =I|n, >0,n, >0]

7770k

O, is an indicator function (=1 if argument is true, 0 otherwise)
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I'E Estimating ATOT using CIA

Estimation by Stratification

Note how ATOTStr _ i 5 N, -[7 3 ]

K Ok
k=1 § :
6k 'N1k
k=1

IS ,imitating” the population version of ATOT under CIA
ATOT =E,,_[E(Y,|D=1,X)-E(Y, |D=0,X)]

1k

Indicator function 6&( IS enforcing common support.
Weights &, N,/ > 5, -N,,
k=1

correspond to f(X|D=1).
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ﬂﬁ Angrist (1998)

Estimating the Labor Market Impact of Voluntary
Military Service Using Social Security Data on
Military Applicants

Joshua D. Angrist
Econometrica, Vol. 66, No. 2. (Mar., 1998), pp. 249-288.
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ﬂﬁ Angrist (1998)

What is the labor-market value of service in the volunteer military?

Many econometric studies have compared the earnings of veterans
and nonveterans.

The proper interpretation of results from such studies is unclear,
however, because veterans are both self-selected and screened by
the military.

The problem of selection bias plagues almost all evaluation research
outside of randomized trials.

This paper presents evidence from two new strategies for estimating
the effect of voluntary military service on the earnings and
employment status of veterans.

His strategies are Matching (covered now) and IV (covered later)
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ﬂﬁ Angrist (1998)

Arguments for his Matching Strategy (1)

First, comparisons by veteran status are restricted to a sample of
applicants to the military, only about half of whom actually enlist.
Nonenlisting applicants probably provide a better control group for
veterans than conventional cross-section samples because, like
veterans, applicants have indicated a strong interest in military
service.

Moreover, the data analyzed here contain information on most of the
characteristics used by the military to screen applicants. The
selection bias induced by military screening can therefore be
eliminated using regression techniques or by matching on the
covariates used in the screening process.
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ﬂﬁ Angrist (1998)

The data
Administrative data from US military
+ Earnings data from Social Security Administration

The military data: information on applicants and
entrants to the military for each fiscal year.
Information at the time of application:

« basic demographic variables,

« physical examination results,

* test scores.

SSA keeps track of the earnings of all workers covered
by Social Security
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ﬂﬁ Angrist (1998)

The data

Random sample from military data is matched to SSA
earnings histories. Limited to

* men aged 17-22 who applied during 1976-82,

* had valid sex and race codes,

 data on Armed Forces Qualification Test scores

« at least a 9th grade education

* but no more than a 4-year college degree.

Target population: 2.2 million white men and 900,000
nonwhite men.
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ﬂﬁ Angrist (1998)

The data

Target population:
2.2 million white men and 900,000 nonwhite men.

Matched sample: 697,944 applicants with Social
Security earnings for each year from 1974 through 1991.
Used for descriptive analysis

Estimates of causal effect based on restricted” sample
of applicants

* who applied from 1979-82,

« with AFQT scores in groups Il and V.

« contains 128,968 whites and 175,262 nonwhites.

" the restrictions are motivated by imposed to aid |V estimation 33



ﬂﬁ Angrist (1998)

More about the data (from a conhort perspective)

TABLE 1
APPLICANT POPULATION AND SAMPLE

Application Year

Race 1976 1977 1978 1979 1980 1981 1982

A. Population®

White 339.,5 286.9 235.9 253.1 348.6 387.3 309.8
Percent 53 52 54 55 53 49 52
veteran”

Nonwhite 128.6 114.8 103.6 119.5 134.3 149.3 112.5
Percent 44 46 50 46 41 36 43
veteran

B. Sample©

White 492 46.5 40.0 39.4 52.9 57.9 473
Percent 56 53 55 57 54 50 53
veteran

Nonwhite 50.9 48.1 44.6 51.9 57.0 63.7 48,7
Percent 49 49 52 49 44 38 45
veteran

*The population is as in Angrist (1993a, Table 4), excluding those with less than a 9th grade education at the time of
application. Numbers reported are thousands.

" Veterans are applicants identified as entrants to the military within two years following application.
[ - — o . "o * . wn s ow e L. .




ﬂﬁ Angrist (1998)

More about the data:

“The typical applicant in the matched sample was

« aged 18-20 at the time he applied,

» had an 11th or 12th grade education,

 and scored in the lower to middle range of the AFQT scale.

* roughly 30 percent of applicants in the sample were aged 18
when they applied to the military, 25 percent were aged 19, and
16 percent were aged 20.

* A total of 40 percent of applicants in the sample were high
school graduates, 4 percent were GED certified, and 34 percent
had completed 11t grade only. Out of nearly 700,000 applicants
in the sample, only 739 were college graduates.”

35



ﬂﬁ Angrist (1998)

What is Y?
Two outcomes: earnings and employment status.
We focus on his results on earnings

“The primary purpose of this paper is to estimate the
iImpact of military service on the earnings of veterans.”

ElY, - Y,| D=1]=E[Y,| D=1]-E[Y,| D =1].

This tells us whether, on average, veterans benefited or suffered from military
service.
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ﬂﬁ Angrist (1998)

“Simple comparisons by veteran status can be used to
estimate E[Y, — Y, | D =1]. Because the sample used
here includes only applicants to the military, these
comparisons control for differences between veterans
and nonveterans that originate in the decision to apply to
the military.”
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[ ] E Angrist (1998)

“The sample is restricted to applicants with
AFQT scores in the middle range....

In 1979, 67 percent of white applicants and
78 percent of nonwhite applicants had
AFQT scores in categories Illl and IV,
corresponding to the 10t through 64th
percentiles of the AFQT reference
population.”

“In the sample of 1979-82 applicants with
AFQT scores in categories Ill and

IV, veterans earned more than nonveterans
in every year in which they applied

to the military. This can be seen in Figure 2,
which plots earning profiles by

veteran status and application year.”

25‘000 [:- T T B ) T T ¥ T I _
Veteran status:
Veterans
-—-- Nonveterans { - _ .
20,000
@ 15,000
£
€
o
L
<
o
('
10,000
5,000
1982 applicants
0 b 1 1 1 1 | 1 |
74 76 78 80 82 84 86 88 90

Year

FIGURE 2.—Earnings profiles by veteran status and application year for men who applied
1979-82, with AFQT scores in categories III and IV. The plot shows the actual earnings of men who
applied in 1982, earnings + $3,000 for men who applied in 1981, earnings + $6,000 for men who
applied in 1980, and earnings + $9,000 for men who applied in 1979.
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Whites Nonwhites

. Difference Difference
An rl S‘t 1 9 9 8 Mean in Means® Mean in Means
Year (1) (2) (5) (6)

A. Earnings®

First the raw differences 74 1827 261 1572 49
(7.0) (4.4)
_ _ _ 75 2379 414 216.9 -6
“Differences in earnings by veteran status are (6.3) (4.5)

reported with standard errors in columns 2 and 6 6. A4 _‘g"f) 413.6 _1(2?51) Recall: sample

= . members applied

of Table 11, separately by race. 77 10129 7.1 8209  —130  during 1976.82,
(11.3) 9.1
. 78 2147.1 40.3 1677.9 58.1
Becauge the sample is so Iargg, all of the post- (16.7) (13.4)
1978 differences are very precisely measured 79 35607  188.0 27970 3403
and significantly different from zero. Some of the % vy 320 lgg?
earlier small differences are significant as well. (23.4) (18.0)
81 62260 8555 52188 19200
: (27.2) (20.7)
The veteran earnings gap reached a peak of 8 72006( 15085 61502 (D71
1500 dollars for whites and 2900 dollars for (303) 23.4)
nonwhites in 1982-83, and remained substantial . [
through the end of the sample period. 84 98742 6528 83772 22029
(39.5) (30.5)
T : 85 109727  469.8 9306.8  1955.5
The fact that pre-appllcathn-year dnTerences are (44.6) (34.4)
small tends to support the interpretation of the 86 120045  543.7 10106.2  1881.3
i (50.4) (38.7)
vetgran/nonveteran contrast as an unbiased g5 EREA  £ab {0R33D  3050
estimate of E[Y,-Y,|D=1]. (54.6) (41.8)
In Section 4, however, | show that these simple 88 14136.1 9((5)32) 11480.1 zgig)
contrasts are misleading. 89 147161  1169.1 117514 2379.1
(61.0) (47.6)
90  14886.1  1300.8 119043  2483.6
— (63.0) ———— (49.4)
91 14407.9 1559.6 11518.7 2758.8

(64.6) (50.8) 39

What do the numbers mean? “To save space, differences in the table are for earnings averaged across application cohorts”.



ﬂﬁ Angrist (1998)

Arguments for his Matching Strategy (2)

Because the sample is confined to applicants, comparisons of
earnings by veteran status such as those in Table Il control for
veterans' decisions to apply to the military.

On the other hand, veterans are carefully selected by the military on
the basis of personal characteristics, like schooling and test scores,
that are clearly related to future earnings. This fact motivates the
matching estimator.

It is worth mentioning again, however, that the modest pre-
application provide little evidence of selection bias. Of course, part
of the problem with the use of such early comparisons as a
specification check is that earnings or labor force participation as a
teenager may not be related to earnings potential as an adult.
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ﬂﬁ Angrist (1998)

What is X?
In practice, the observed covariates take on values in the
set of all possible combinations of

* race,
* application year,

» schooling at the time of application,

* Armed Forces Qualification Test (AFQT) score group
* year of birth.

466 possible values of X for whites and 429 possible
values of X for nonwhites

41



l' Angrist (1998)

Is there a common support problem?

,In practice, it can happen that some population cells
where both treatment and control observations are
available nevertheless remain unrepresented in a
random sample. In this study, however, the sample was
drawn conditional on X. Therefore, sample observations
on both veterans and nonveterans are necessarily
available wherever the population probability of
treatment is neither zero nor one*
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l' Angrist (1998)

Matching estimator: Stratification

ATOTS"_ZK: o0 N ¥, -¥,]

k=1 § :
sum over all cells — 6 N1k

(all outcomes of X)

ZY Y, = ZY 5 =1, >0,n, >0]

1k |D| 1ﬁX| Xk Ok |D| OﬁX| Xk

< |

Micro data of 697644 persons from Military applicants data base can
be linked via SSN to Social Security Earnings records. Angrist only
obtained cell-wise information: counts, average and standard

deviation of earnings.

’ As noted above, the sample design implies that §, = 1[n,;, > 0, ny, > 0] equals the population
indicator 1[N, > 0, Ny, > 0]. In practice, however, a few cells are missing because of the confiden-

tiality edit.



[ ] EAngrist (1998)

“‘Matching estimates (averaged over
application cohorts) of veteran effects
suggest that the simple comparisons of
earnings by veteran status overestimate
the effect of military service on earnings
and employment.

For whites, they range from a high of
only 783 dollars in 1982 to a low of -557
dollars in 1986. Standard errors for these
estimates are less than 60 dollars. It is
negative in every year after 1983 except
1991.

Effects for nonwhites are much larger
although they are also substantially
smaller than the corresponding simple
comparisons. The largest estimate is
2,186 dollars in 1982 and the smallest is
708 dollars in 1988.

The 1991 estimate of 1,026 dollars for
nonwhites is less than 9 percent of
nonwhite's average 1991 FICA earnings.
The 1991 estimate for whites is about
30 dollars and is not statistically different
from zero.

Whites Nonwhites
Difference Controlled Regression Difference Controlled Regression
Mean in Means*® Contrast Estimates Mean in Means Contrast Estimates
Year (1) (2) (3) (4) (5) (6) (7 (8)
A. Earnings®
74 182.7 —26.1 —14.0 ~=13.0 157.2 -4.9 —2.0 —3.9
(7.0) 9.2) 9.4) (4.4) (6.0) (5.8)
75 237.9 —41.4 —14.2 -12.0 216.9 -0 -17.1 -15.2
(6.3) (7.6) (7.8 (4.5 (6.0) (5:5)
76 473.4 —47.9 —14.8 -12.7 413.6 —14.5 =333 -30.2
(8.1) (9.0) (9.3) (6.4) (8.0 (7.4)
77 1012.9 =7.1 —8.6 -9.4 820.9 -13.0 -56.0 =513
(11.3) (12.3) (12.2) (9.1) (11.1) (10.0)
78 2147.1 40.3 =235 —224 1677.9 58.1 -53.6 —42.5
(16.7) (18.1) (17.2) (13.4) (16.1) (14.1)
79 3560.7 188.0 —8.4 -11.2 2797.0 340.3 119.1 122.3
(21.0) (23.2) (21.6) (16.2) (20.1) (17.2)
80 4709.0 572.9 178.0 175.9 39322 1154.3 741.6 738.5
(23.4) (27.2) (24.6) (18.0) (23.4) (19.5)
81 6226.0 855.5 249.5 249.9 5218.8 1920.0 1299.9 1318.5
(27.2) (32.4) (29.1) (20.7) (28.2) (23.1)
82 7200.6  1508.5 783.3 782.4 6150.2 2917.1 2186.0 22101
(30.3) (36.4) (32.5) (23.4) (32.0) (26.0)
83 8398.1 1390.5 588.8 601.5 7221.1 2889.9 2103.8 21423
(34.4) (41.1) (36.6) (27.0) (36.7) (29.8)
84 9874.2 652.8 =235.7 —198.5 8377.2 22029 1333.0 1428.9
(39.5) (46.9) 41,7 (30.5) (41.4) (33.4)
85 10972.7 469.8 —521.3 —459.6 9306.8 1955.5 932.3 1059.2
(44.6) (52.6) (46.8) (34.4) (46.2) (37.3)
86  12004.5 543.7 =357.3 —491.7 10106.2 1881.3 720.9 872.3
(50.4) (59.0) (52.5) (38.7) (51.2) (41.6)
87 13045.7 663.9 —548.0 —464.3 10833.0 2050.1 751.0 925.0
(54.6) (63.9) (56.8) (41.8) (55.2) (44.8)
88 14136.1 904.3 —415.5 -311.7 11480.1 2175.0 708.2 923.7
(58.3) (68.2) (60.6) (44.9) (59.5) (48.1)
89  14716.1 1169.1 —248.6 -136.3 11751.4 2379.1 799.7 1031.9
(61.0) (71.2) (63.2) (47.6) (62.7) (50.9)
90  14886.1 1300.8 —154.5 —53.2 11904.3 2483.6 824.9 1064.0
(63.0) (73.6) (65.2) (49 4) (65.4) (52.7)
91 14407.9 1559.6 29.8 146.2 11518.7 2758.8 1026.1 1277.9
(64.6) (75.6) (66.9) (50.8) (67.2) (54.3)




I'E Estimating ATOT using CIA

General Matching Estimator

ATAC)TGM: ninz{Yﬁ - é(Yo | D = O’Xi )}

1 i=1

where - <
E(Yo |D = O’Xi): Z\Ni,j 'YOj
j=1
where the weights sum to one: > W,; =1

Example

" 1 if jis the (unique) nearest neighbor of i
B 0 otherwise
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"E How observations are matched

Several approaches exist to match treatment group
observation | with control group observation(s) :

* k-Nearest-Neighbor-Matching (k may be one)

 Caliper Matching:
use all comparison group observations within a
specified radius (“caliper”)

* Blockwise Matching
* Kernel Matching

We can match with or without replacement.
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I'E Estimating ATOT using CIA

Kernel Estimator of ATOT (,Kernel Matching®)
ATOT =E(Y,|D =1)- EX|DZ1[E(Y0 |D =0, X)]

ATOTK——Z{1, E(Y, |D=0,X,)|

1|1
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I'E Estimating ATOT using CIA

Kernel Estimator of ATOT (,Kernel Matching®)

ATOT =E(Y, | D =1)-E,,,[E(Y, |D =0,X)]

ATOT« = niZ{\a {E(Y, 1D =0,X])

I: / K[ X — xjj \
A 1 N1 no
ATOT =— ) {Y, 1) — Yo}
n, Z Z: ZK(X _ X' j
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l'ﬁ Nadaraya-Watson Kernel Regression Estimator

Recall: Kernel Estimator of E[Y|X=X]

rlﬁh(x) = — Y|
n X — X i X —X
K J i=1 K J
S TR
— n Wh,i(X)Yi
i=1
In our specific application
P PP K( Xi _ XJ j
n No h
E(Y,|D=0,X)=

=1 : K( Xi - le ’
|=1 h 49



I'E Kernel function

U= X~ Xi | = Indicator function
h

Kernel

Uniform T iu<)

Triangle (1=u)- W

Epanechnikov

Quartic

Triweight

Gaussian

Cosinus




[ ] E Kernel functions

Uniform Epanechnikov
e s
=
04 L e L
= f=1
= 5
<
o 5 e -
- = — =
[ s - =
2 < o
=+ L = 5
= =
g- -
bl 5 oL 5
= =1
5!_ o
S —— ol Ll =
L] L] L] L] T T T L] L] T
-1.5 -1 -0.5 0 0.5 1.5 -1.5 -0.5 0 a.5 1 1.5
K() K
Triangle Quartic
/5\ v 9 v
2 3 - g 5 i
=0 - [t =
-1.5 -1 -0.5 0 Q.5 1.5 -1.5 -0.5 0 0.5 1 1.5
K@) K(u)
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l' Multivariate Kernel Regression

E(Y | X)=E(Y | X,.., X, ) =m(x)

Multivariate Nadaraya-Watson-Kernel Estimator

h1 , h ,lll, h
Y

i=1 ZK[ X1jh_ X, | ijh_ X, . ijh_ X, j |

j=1 1 2

2 kK

Suffers from the curse of dimensionality
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I'E Matching on the Propensity Score (1)

Definition Propensity Score:

The "Propensity Score’ is the conditional probability of
receiving the treatment (or the fraction of the population
with charactersitics X belonging to the treatment group)

PD=1|X,,...X )=P(X)=E(D| X)
* It maps the multidemsional X (which is shorthand for
X4 Xy, ooy X ) Into the scalar 0 = P(X) = 1

* |If we knew P(X)) for each individual i, then we could

look for matches with respect to this scalar (rather than
the multidimensional X)

Is this justified?
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"E Matching on the Propensity Score (ll)
Is matching on the propensity score justified?

vest If (Y,Y°)LD|X = (Y',Y°)LD|P(X)

If independence of the potential outcomes from the
treatment holds conditional on X, then it also holds

conditional on P(X). That is, CIA for X implies CIA for P(X)!
In terms of the means:

It E[Y,|D=1,X]=E[Y, |D=0,X]=E[Y, | X]
E[Y, |D=0,X]=E[Y, |D=1,X]=E[Y, | X]

then E[Y,|D =1,P(X)]=E[Y,|D =0,P(X)] = E[Y, | P(X)]
E[Y, D =0,P(X)]=E[Y, |D =1,P(X)|=E[Y, | P(X)]
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I'E Matching on the Propensity Score (lll)

(Y,Y?)LD|X = (Y,Y°)LD|P(X)
Proof:
What we need to show is that

f PD=1]Y",Y°, X]=PD =1|X]
c PID =1]Y", Y°,P(X)|=P[D =1|P(X)]
Preliminary result: ,Balancing property of P(X)*
D L X|P(X)

i.e. P(D=1|X,P(X))=P(D=1|P(X))
or f(X|D=1,P(X))=f(X|D=0,P(X)
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l' Matching on the Propensity Score (1V)

PD=1|X,,...X )=P(X)=E(D| X)

Q@ LXIPXID

Proof: show that P(D=1|X,P(X))=P(D =1|P(X))
P(D =1| X,P(X))=E(D | X,P(X))=E(D| X)=P(D =1| X)
=P(X)
P[D =1]P(X)|=E[D | P(X)|=E{E[D | X,P(X)]| P(X);

= E[P(X)|P(X)]

~P(X)

= f(X|D=1,P(X))=f(X|D =0,P(X))
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I'E Numerical Example:

f(X) P(D=1]X)
1, 100 0.5 0.9
X2| 40 0.2 0.9
3/ 20 01 0.2
4| 40 0.2 0.4
""""""""""""" 200 1
Is P(D =1| X,P(X))=P(D =1|P(X))?
PD=1X=1,P(X)=0.9)=PD=1|X=1,X=1UX=2)
=P(D=1X=1)=P(1)=0.9
PD=1|X=2,P(X)=0.9)=PD=1]X=2,X=1UX=2)
=P(D=1X=2)=P(2)=0.9
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l' Numerical Example:

f(X) P(D=1|X) D=1 D=0 f(X| D=1) f(X | D=0)

1 100 0.5 0.9 90 10 0.616 0.185

X 2 40 0.2 0.9 36 4 0.247 0.074

3 20 0.1 0.2 4 16 0.027 0.296

____________ 4| 40 02 04 16 24 0110 0444
200 1 146 54 1

Is f(X|D=1,P(X))=f(X|D=0,P(X))?

f(X=1]D=1,P(X)=0.9)=P(X=1|D =1,P(X)=0.9)
=P(X=1|D=1,X=1UX=2)
P(X=1n(X=1UX=2)|D=1)
 P(X=1uX=2|D=1)
- P(X=1|D=1)
P(X=1/D=1)+P(X=2|D=1)
0616
 0.616+0.247

0.714
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l' Numerical Example:

f(X) P(D=1|X) D=1 D=0 f(X| D=1) f(X | D=0)

1 100 0.5 0.9 90 10 0.616 0.185

X 2 40 0.2 0.9 36 4 0.247 0.074

3 20 0.1 0.2 4 16 0.027 0.296

____________ 4| 40 02 04 16 24 0110 0444
200 1 146 54 1

Is f(X|D=1,P(X))=f(X|D=0,P(X))?

f(X=1D=0,P(X)=0.9)=P(X=1|D=0,P(X)=0.9)
=P(X=1/D=0,X=1UX=2)
P(X=1n(X=1UX=2)|D=0)
~ P(X=1uX=2|D=0)
- P(X=1|D=0)
~ P(X=1|D=0)+P(X=2|D=0)
0185
© 0.185+0.074

0.714
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l' Numerical Example:

f(X) P(D=1|X) D=1 D=0 f(X| D=1) f(X | D=0)

1 100 0.5 0.9 90 10 0.616 0.185

X 2 40 0.2 0.9 36 4 0.247 0.074

3 20 0.1 0.2 4 16 0.027 0.296

____________ 4| 40 02 04 16 24 0110 0444
200 1 146 54 1

In the same way, it can be shown that

f(X=2|D=1,P(X)=0.9)=f(X=2|D=0,P(X)=0.9)
= 0.286

Hence, f(X|D=1,P(X)=0.9)=f(X|D=0,P(X)=0.9) forall x

f(X)  P(D=1|X) D=1 D=0 f(X|D=1) f(X|D=0)f(X|D=1,P(X)=0.9) f(X|D=0,P(X)=0.9)
1 100 0.5 0.9 90 10 0.616  0.185 0.714 0.714
X 2 40 0.2 0.9 36 4 0.247  0.074 0.286 0.286
3 20 0.1 0.2 4 16 0.027  0.296
__________ 4| 4 02 04 16 24 0110 0444
200 1 146 54 1
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.'E Numerical Example:

f(X)  P(D=1|X) D=1 D=0 f(X|D=1) f(X|D=0[f(X|D=1,P(X)=0.9) f(X|D=0,P(X)=0.9)
1 100 0.5 0.9 90 10 0.616  0.18 0.714 0.714
X 2 40 0.2 0.9 36 4 0.247  0.07 0.286 0.286
3 20 0.1 0.2 4 16 0.027  0.296
__________ 4| 40 02 04 16 24 0110 0444
200 1 146 54 1

f(X|D=1,P(X)=0.9)=f(X|D=0,P(X)=0.9) forall x

Propensity score matching combines groups with different values of Z but the same values of
Pr(D = 1|Z). To see why this works, consider two groups, one with Z = Z; and the other with Z =
Zy, but where Pr(D = 1|Z = Z,) = Pr(D = 1|Z = Z3). Combining these groups in the matching
works because they will have the same relative proportions in the D = 0 and D = 1 populations

precisely because they have the same probabilty of participation. As a result, any difference in E(Yy)

Smith and Todd (2003)
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I'E Matching on the Propensity Score (V)
(YY) LD|X = (Y,Y°)LD|P(X)

Proof: show that PD =1|Y",Y° P(X)|=P[D =1|P(X)]
PlD = 1] Y, Y°,P(X)|=E[D | Y', Y°, P(X)
=EED | XY, Y°,PX)|| Y, Y°,P(X)}
=EED| XY, Y] Y, Y, P(X)
=EED|X]|Y', Y, P(X)]
=E[P(X)| Y, Y*,P(X)| = P(X)
But PD =1|P(X)|=P(X )

= PD=1]Y",Y°P(X)|=PD=1|P(X)

O




I'E Matching on the Propensity Score (VI)

(Y',Y*) LDIP(X)
This implies:

E[Y, |D =1,P(X)|=E[Y, | D =0,P(X)] = E[Y; | P(X)
E[Y, 1D =0,P(X)]=E[Y, |D =1,P(X)|=E[Y, | P(X)]

ATE = E(Y,)-E(Y, ) = E, o [E(Y, | PX) - E(Y, | P(X))]
— E, [E(Y, 1D =1,P(X))-E(Y, | D = 0,P(X))

ATOT =E(Y, |D=1)—E(Y, | D =1)

EP(X)|D 1[ (Y1 | D=1 ’P(X))_ E(Yo | D=1 ,P(X))]

E o E(Y; 1D =1,P(X))~E(Y, | D = 0,P(X))
E(Y, 1D = 1)- o [E(Y, 1D = 0,P(X))
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l' Numerical Example:

f(X) P(D=1]X) D=1 D=0 f(X]D=1) f(X] D=0) E[Y1]X] E[YO|X] ATE(X) ATE(X)*f(X|D=1)
1 100 0.5 0.9 90 10 0.616 0.185 4 2 2 1.23287671
X 2 40 0.2 0.9 36 4 0.247 0.074 6 5 1 0.24657534
3 20 0.1 0.2 4 16 0.027 0.296 2 3 -1 -0.02739726
A 40 02 04 16 : 24 0.110 _ 0.444 1 4 -3 -0.32876712
200 1 b 1.12328767
ATOT =E,_[E(Y,|D =1,X)-E(Y, | D=0,X)]
Based on CIA

E

E[Y, |D=1,X]=E[Y, |D=0,X]=E[Y, | X]

:Yo |D=O,X]=E[YO |D:1,X]=E[YO|X]

Do we get the same answer from (Y,Y°) LD [P(X)

E[Y; D =1,P(X)]=E[Y, | D =0,P(X)| = ELY, | P(X)]
E[Y, |D=0,P(X)]=E[Y, |D =1,P(X)]=E[Y, | P(X)]

and

ATOT =Ep ol [E(Y, ID=1,P(X)-E(Y, [D=0,P(X))]



I'E Numerical Example:

f(X) P(D=1|X) D=1 D=0  f(X|D=1)  f(X|D=0) E[Y1]|X]

1 100 0.5 0.9 a0 10 0.616 0.185 4

X 2 40 0.2 0.9 36 4 0.247 0.074 6

3 20 0.1 0.2 4 16 0.027 0.296 2

. N 40 02 04 16 24 0110 0444 1
200 1 146 54 1

We need to calculate

ATOT = EP(X)| D=1 [E(Y1 D=1 ’P(X))_

using E[Y, |D =1,P(X)]=E[Y, | D = 0,P(X)] = E[Y, | P(X)]

E[Y, D =0,P(X)]=E[Y, |D =1,P(X)]

f(P(X)| D=1) f(P(X)| D=0)

0.2 0.027 0.296

P(X) 0.4 0.110 0.444
0.9 0.863 0.259

1 1

fP(X)=0.9|D=1)=P(X=1UX=2|D=1)

=E[Y, [P(X)]
E[Y1|P(X)] ELYO|P(X)]
2 3
1 4
4.571 2.857

\

E[YO|X]

H WO N

ATE(P(X))
-1

-3

1.714

ATE(X) ATE(X)*f(X|D=1)

2

1
-1
3

E(Y, |D=0,P(X))]

-0.02739726
-0.32876712

1.47945205
1.12328767

1.23287671
0.24657534

-0.02739726
-0.32876712

1.12328767

=P(X=1|D=1)+P(X=2|D=1)
=0.616+0.247 = 0.863

E[Y, |P(X)=0.9D =1 =E[Y, | X=1,D=1-f(X=1|D =1,P(X)=0.9)
+E[Y,|X=2,D=1-f(X=2|D=1,P(X)=0.9)

=4.0.741+6-0.286 = 4.571
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l' Matching on the Propensity Score (1V)

Propensity Score
needs to estimated in practice
Probit-Modell:

P(X)=P(D =1| X,,..., X, )= DB, + By X, By -

Logit Model:

X )
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I'E How matching is performed

In Propensity Score Matching we (again) have several
alternative ways in which matching can be performed

* Blockwise Matching
* Kk-nearest neighbor matching
» Kernel matching

« Caliper Matching

Warning: The following formulas pretend that Propensity
Score is known. In practice, it needs to be estimated

67



" Propensity Score Matching

Blockwise Matching on the Propensity Score

N

density of P(X) for
D=0 density of P(X) for
den D=1

S — - — = -
e S — e - -

—— SN Ny
e e m - — o

! j > P(X)
| | | | |
1 2 3 4 5
For the 1st block:
s 1
ATOT1 - Z Y1i 0/ T | Average of Yamong D=0 in
n1 1 iel(1) 0 1st Propensity Score-block

all treatment group members in 1st block
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I'E Propensity Score Matching - Blockwise Matching

For all Q blocks:

Weighing with the
———— | importance of a block, i.e.
the fraction of treatment
group members in a block

Variance of this estimator

Var(ATOTSj 1 {Var ’ +z Nt Mo " Var(Y,, )

q=1 n1 qO

This assumes that the Propensity Score is known.
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.'E Propensity Score Matching

K-nearest-neighbor matching

control group members

— sy
jC(i) \ belonging to the k-nearest

neighbors of treatment

ATOT" =niz Y- > WY,
1 =

n1 n1
1 group observation i (in terms
= —" E Y1i — E E Wij . YOj of Propensity Scores)

where W, = Tifje C(i) otherwise W, =0

nOI
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" Propensity Score - K-NN Matching

Variance of the k-NN estimator

Var(AT(A)TMj: 1 -ZVar ’ +;( Fvar(y, )}

() |
— (n1)2 | n,-Var(Y,, )+ _nz::(wj)zvar(on )}

4 (Wj )ZVar(on)

71



l'ﬁ Propensity Score Matching

Kernel Matching on Propensity Score
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.'E Checking match quality

For each control variable X:
Standardized Bias prior to Matching

—100 - (>_(1_>_(0)

SB
before J0,5-[Var,(X)+ Var,(X)]

Standardized Bias after Matching

SB —100 (X1M _XOM)

after

| 40,5 [Var,,(X)+ Vary, (X)]
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l'ﬁ Dehejia and Wahba (1999,2002)

Rajeev H. Dehejia and Sadek Wahba

"Causal Effects in Non-Experimental Studies: Re-
Evaluating the Evaluation of Training Programs”
Journal of the American Statistical Association, Vol. 94,
Number 448 (December 1999), pp. 1053-1062

PROPENSITY SCORE-MATCHING METHODS FOR
NONEXPERIMENTAL CAUSAL STUDIES

The Review of Economics and Statistics, February 2002,
84(1): 151-161
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I'E Example: Causal Effect of the NSW program

National Supported Work (NSW) Demonstration project

* Aim: provide work experience (6-18 months) for individuals with
economic and social problems

* Four target groups:

« Women on Aid to Families with Dependent Children (AFDC)
 former addicts

« former offenders

 young school dropouts.

* Randomized treatment:
Candidates were selected on the basis of eligibility criteria and
then randomly assigned to the program.

* Outcome:
Real annual earnings in 1978
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I'E LaLonde (AER 1986):

“Evaluating the Econometric Evaluations of Training Programs with
Experimental Data“

1. Estimate causal effect by comparing outcomes of experimental
treatment and control group

2. Use survey data to form a non-experimental control group

3. Using experimental treatment group + nonexperimental control
group + econometrics (OLS, IV, etc.): can experimental estimate of
causal effect be replicated?

Lalonde: “This comparison shows that many of the econometric procedures
do not replicate the experimentally determined results, and it
suggests that researchers should be aware of the potential for
specification errors in other nonexperimental evaluations.”

Heckman & Hotz (1989): A reanalysis of the NSW data reveals that a
simple testing procedure eliminates the range of nonexperimental
estimators at variance with the experimental estimates of program
impact
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I'E Dehejia and Wahba (1999, 2002)

D&W reanalyze the NSW data and find:

the right nonexperimental method (Propensity Score

matching) is getting the right answer!

Sample:

“The data we use are a subsample of the data used in LaLonde (1986).
Using the LaLonde male sample of 297 treated and 425 control units, we
exclude the observations for which (pre-treatment) earnings in 1974 could
not be obtained, thus arriving at a reduced sample of 185 treated

observations and 260 control observations.”
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l' Dehejia and Wahba (2002)

TAaBLE 1 —SaMPLE MEANS AND STANDARD ERRORS OF COVARIATES
For MALE NSW PARTICIPANTS

National Supported Work Sample (Treatment and Control)

Dehejia-Wahba Sample

Variable Treatment Control
Age 25.81(0.52) 25.05(045)
Years of schooling 10.35(0.15) 10.09 (0.1)
Proportion of school dropouts 0.71(0.03) 0.83 (0.02)
Proportion of blacks (.84 (0.03) 0.83 (0.02)
Proportion of Hispanic 0.06 (0.017) 0.10(0.019)
Proportion married (.19 (0.03) 0.15(0.02)
Number of children 0.41 (0.07) 0.37 (0.06)
No-show variable 0 (0) n/a
Month of assignment (Jan. 1978 = 0) 18.49 (0.36) 17.86 (0.35)
Real earnings 12 months before training 1,689 (235) 1,425 (182)
Real earnings 24 months before training 2,096 (359) 2,107 (353)
Hours worked 1 year before training 204 (36) 243 (27)
Hours worked 2 years before training 306 (46) 267 (37)
Sample size 185 260
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l' Dehejia and Wahba (1999, 2002)

Nonexperimenta control-group for matching analysis are
constructed from

CPS:

The Current Population Survey is a monthly survey of households
conducted by the Bureau of Census for the Bureau of Labor Statistics.

PSID:

The Panel Study of Income Dynamics (PSID), begun in 1968, is a
longitudinal study of a representative sample of U.S. individuals
(men, women, and children) and the family units in which they
reside.
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.'E Dehejia and Wahba (1999)

Table 1. Sample Means of Characteristics for NSW and Comparison Samples

No. of observations  Age  Education Black Hispanic No degree Married RE74 (US.§) RE75(US. §)
NSW/Lalonde:*
Treated 297 24.63 10.38 .80 09 73 17 3,066
(:32) (.09) (02)  (.01) (.02) (-02) (236)
Control 425 24.45 10.19 80 1N a1 16 3,026
(.32) (.08) (.02) (.02) (.02) (.02) (252)
RE74 subset?®
Treated 185 25.81 10.35 84 059 71 19 2,096 1,532
(.35) (.10) (.02) (.01) (.02) (.02) (237) (156)
Control 260 25.05 10.09 83 1 83 A5 2,107 1,267
(.34) (.08) (02) (.02 (.02) (.02) (276) (151)
Comparison groups:®
PSID-1 2,490 34.85 1211 25 032 31 87 19,429 19,063
[.78) [.23]) [.03] [.01) [.04) [.03] [991) [1,002]
PSID-2 253 36.10 10.77 .39 067 49 74 11,027 7,569
(1.00) [27] [.04] [.02) [.05) (.04) [853] [695]
PSID-3 128 38.25 10.30 45 18 51 70 5,566 2611
(117 [-29] [.05] (03] [.05) [.05] (686) [499]
CPS-1 15,992 33.22 12,02 07 07 29 71 14,016 13,650
[.81] [21] [.02] [.02] [.03] [.03) [705] [682]
CPS-2 2,369 28.25 11.24 11 .08 45 46 8,728 7,397
(877 (18] [0 (02 [.04] [.04] [667] [600]
CPS-3 429 28.03 10.23 21 14 60 51 5,619 2,467
[.87) (23] [.03] (03] [.04] [.04] [552] [288]

80



l'ﬁ Dehejia and Wahba (1999,2002)
A Simple Algorithm for Estimating the Propensity Score

1.
2.
3.

4.

Start with a parsimonious logit specification
Sort data according to estimated propensity score

Stratify observations such that estimated propensity scores within a
stratum for treated and comparison units are close

Statistical test: for all covariates, differences in means across treated
and comparison units within each stratum are not significantly different

from zero.
a) If covariates are balanced between treated and comparison
observations for all strata, stop.
b) If covariates are not balanced for some stratum, divide the stratum
into finer strata and reevaluate.
c) If a covariate is not balanced for many strata, modify the logit by

adding interaction terms and/or higher-order terms of the covariate
and reevaluate.
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I'E Dehejia and Wahba (1999,2002)

Propensity Score Estimation via Logit Model:

P(X)=PD =11 X, X,) = 1
T A exp(<(B, + By X+ 4By X))

=F(B, +B,- X, +...+B, - X,)

~n

P(X)=F(@B, +B,-X, +...+B, -X,) whereB,,B,....8,are MLEs

X-variables: age, age?, educ, educ?, married no degree,
black, Hispanic, RE74, RE75, RE74%, RE75%,U74, U75,
U74*black (for model with PSID control group).
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l'E Dehejia and Wahba (2002)

How good is the matching?

11168 (of 15992) of the CPS obs and 1254 (of 2490) of
the PSID obs have estimated propensity scores less
than the minimum estimated propensity score for the
treated units.

Most of the remaining comparison obs (4398 for the CPS
and 1007 for the PSID) are in the first bin of sorted
propensity scores.

In the NSW-PSID sample, many of the upper bins have
far more treated units than comparison units.

“Hence, it is clear that very few of the comparison units
are comparable to the treated units.”
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I'E Dehejia and Wahba (2002)

“Three issues arise in implementing matching:

1. whether or not to match with replacement,

2. how many comparison units to match to each treated
unit

3. which matching method to choose.
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I'E Dehejia and Wahba (2002)

1. Whether or not to match with replacement?

Matching with replacement minimizes the propensity
score distance between the matched comparison units
and the treatment unit: each treatment unit can be
matched to the nearest comparison unit, even if a
comparison unit is matched more than once. This is
beneficial in terms of bias reduction.
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I'E Dehejia and Wahba (2002)

1. Whether or not to match with replacement?

“In contrast, by matching without replacement,

when there are few comparison units similar to the
treatedunits, we may be forced to match treated units to
comparison units that are quite different in terms of the
estimated propensity score. This increases bias, but it
could improve the precision of the estimates. An
additional complication of matching without replacement
Is that the results are potentially sensitive to the order in
which the treatment units are matched.”
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I'E Dehejia and Wahba (2002)

2. How many comparison units to match?

“By using a single comparison unit for each treatment
unit, we ensure the smallest propensity-score distance
between the treatment and comparison units.

By using more comparison units, one increases the
precision of the estimates, but at the cost of increased
bias. One method of selecting a set of comparison units
IS the nearest-neighbor method, which selects the m
comparison units whose propensity scores are closest to
the treated unit in question.”
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I'E Dehejia and Wahba (2002)

3. Which matching method to choose?

One method of selecting a set of comparison units is the
nearest-neighbor method, which selects the m
comparison units whose propensity scores are closest to
the treated unit in question.

Another method is caliper matching, which uses all of
the comparison units within a predetermined propensity
score radius (or “caliper”). A benefit of caliper matching
Is that it uses only as many comparison units as are
available within the calipers, allowing for the use of extra
(fewer) units when good matches are (not)available.”
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[ ] E Dehejia and Wahba (2002)

Empirical results

TaBLE 2. —SAMPLE CHARACTERISTICS AND ESTIMATED IMPACTS FROM THE NSW anD CPS SAMPLES

Treatment
Mean Effect Regression
No. of Propensity No (Diff. in  Treatment
Control Sample Observations  Score® Age School Black Hispanic Degree Married RE74 RE75 U74 U75  Means) Effect
NSW 185 0.37 2582 1035 0.84 0.06 0.71 0.19 2095 1532 029 040 17948 1672¢
(633) (638)
Full CPS 15992 0.01 3323 1203  0.07 0.07 0.30 071 14017 13651 0.88 0.89 —8498 1066

0.02P (0.53) (0.15 (0.03) (0.02) (0.03) (0.03) (367) (248) (0.03) (0.04)  (583F (554

Without replacement:
Random < : 022 2305 1687 037 051 1550 1651
the treated.unlts are rgnked (from e B ds s o T
Lowtohigh €= |owest to highest or highest to lowest 022 2286 1687 037 051 1605 1681
- 0.04) (495) (341) (0.05) (0.05)  (730)  (704)
<« propensity score, or randomly). 022 2305 1687 037 051 1559 1651
0.03) (079 (023) (0.04) (0.03) (005 (0.04) (495 (341) (0.05) (0.05  (733)  (709)

High to low

With replacement:

Nearest neighbor 119 037 2536 1031 0.84 006 069 017 2407 1516 035 049 1360 1375
0.03)  (L04) 031 (0.06) (0.04) 007 (006 (727) (506) ©.07) (0.07)  (913) (907)
Caliper, & = 0.00001 325 037 2526 1031 084 007 069 0.17 2424 1509 036 050 1119 1142
0.03)  (1.03) (030) (0.06) (0.04) (0.07) (0.06) (845 (647) (0.06) (0.06)  (875) (874)
Caliper, & = 0.00005 1043 037 2529 1028 084 007 069 017 2305 1523 035 049 1158 1139
0.02)  (1.03) (032) (0.05 (0.04) (0.06) (0.06) (877) (675) (0.06) (0.60)  (852) (851)
Caliper, & = 0.0001 1731 037 2519 1036 084 007 069 017 2213 1545 034 050 1122 1119

0.02)  (1.03) (031 (0.05 (0.04) (.06 (0.06) (890) (701) (0.06) (0.06)  (850) (843)

Variables: Age, age of participant; School, mumber of school years; Black, 1 if black, O otherwise; Hisp, 1 if Hispanic, O otherwise; No degree, 1 if participant had no school degrees, O otherwise; Married, 1 if
married, O otherwise; RE74, real earnings (1982US})in 1974, RE75, real earnings(1982U8%)in 1975; U74, 1 if unemployedin 1974, 0 other wise; U75, 1 if unemployedin 1975, 0 otherwise; and RE78, real earnings
(1982178§) in 1978,

(A) The propensity score is estimated using a logit of treatment status on: Age, Age?, Age®, School, School?, Married, No degres, Black, Hisp, RE74, RETS, U74, U75, School » RE74,

{B) The treatment effect for the NSW sample i estimated using the experimental confrol group.

{C) The regression treatment effect controls for all covariates linearly, For matching with replacement, weighted least squares iz used, where treatment units are weighted at 1 and the weight for a confrol iz the
mimber of times it is matched to a treatment unit.

(D) The standard error applies to the difference in means between the matched and the NSW sample, except in the last two columns, where the standard error applies to the treatment effect,

(E) Standard errcrs for the treatment effect and regression treatment effect are computed using a bootstrap with 500 replications.
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Low to high 185 032 2523 1028 084 006 066 022 2286 1687 037 051 1605 1681
0.03) (079 (023) (0.04) (0.03) (0.05 (0.04) (495 (341) (©.05 (0.05  (730) (704)
High to low 185 032 2526 1030 084 006 065 022 2305 1687 037 051 1559 1651

(0.03) (0.79) (023 (©.04) (0.03) (@05 (004 495 (G41y (0.05 (0.05) (733) {709)
With replacement:

Nearest neighbor 119 037 2536 1031 0.84 006 069 017 2407 1516 035 049 1360 1375
0.03)  (L04) 031 (0.06) (0.04) 007 (006 (727) (506) ©.07) (0.07)  (913) (907)
Caliper, & = 0.00001 325 037 2526 1031 084 007 069 0.17 2424 1509 036 050 1119 1142
0.03)  (1.03) (030) (0.06) (0.04) (0.07) (0.06) (845 (647) (0.06) (0.06)  (875) (874)
Caliper, & = 0.00005 1043 037 2529 1028 084 007 069 017 2305 1523 035 049 1158 1139
0.02)  (1.03) (032) (0.05 (0.04) (0.06) (0.06) (877) (675) (0.06) (0.60)  (852) (851)
Caliper, & = 0.0001 1731 037 2519 1036 084 007 069 017 2213 1545 034 050 1122 1119

0.02)  (1.03) (031 (0.05 (0.04) (.06 (0.06) (890) (701) (0.06) (0.06)  (850) (843)

Variables: Age, age of participant; School, mumber of school years; Black, 1 if black, O otherwise; Hisp, 1 if Hispanic, O otherwise; No degree, 1 if participant had no school degrees, O otherwise; Married, 1 if
married, O otherwise; RE74, real earnings (1982US})in 1974, RE75, real earnings(1982U8%)in 1975; U74, 1 if unemployedin 1974, 0 other wise; U75, 1 if unemployedin 1975, 0 otherwise; and RE78, real earnings
(1982178§) in 1978,

(A) The propensity score is estimated using a logit of treatment status on: Age, Age?, Age®, School, School?, Married, No degres, Black, Hisp, RE74, RETS, U74, U75, School » RE74,

{B) The treatment effect for the NSW sample i estimated using the experimental confrol group.

{C) The regression treatment effect controls for all covariates linearly, For matching with replacement, weighted least squares iz used, where treatment units are weighted at 1 and the weight for a confrol iz the
mimber of times it is matched to a treatment unit.

(D) The standard error applies to the difference in means between the matched and the NSW sample, except in the last two columns, where the standard error applies to the treatment effect,

(E) Standard errcrs for the treatment effect and regression treatment effect are computed using a bootstrap with 500 replications.




l'E Dehejia and Wahba (2002)

Conclusions

It is something of an irony that the data that we use were
originally employed by LalL.onde (1986) to demonstrate
the failure of standard nonexperimental methods in
accurately estimating the treatment effect. Using
matching methods on both of his samples, we are able
to replicate the experimental benchmark .... in a setting
In which the treated group differs substantially from the
pool of potential comparison units. The method is able to
pare the large comparison group down to the relevant
comparisons “
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l'E Smith and Todd

Jeffrey A. Smith and Petra E. Todd “Does matching overcome
LaLonde’s critique of nonexperimental estimators?”
Journal of Econometrics 125 (2005) 305-353

“This paper applies cross-sectional and longitudinal propensity score
matching estimators to data from the National Supported Work (NSW)
Demonstration that have been previously analyzed by LaLonde (1986)
and Dehejia and Wahba (1999, 2002).

We find that estimates of the impact of NSW based on propensity score
matching are highly sensitive to both the set of variables included in the
scores and the particular analysis sample used in the estimation.

Among the estimators we study, the difference-in-differences matching
estimator performs the best. ..... Our analysis demonstrates that while
propensity score matching is a potentially useful econometric tool, it does
not represent a general solution to the evaluation problem.
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l'E Heckman, Ichimura, Smith and Todd (1996)

, dources of selection bias in evaluating social programs: An interpretation of
conventional measures and evidence on the effectiveness of matching as a
program evaluationmethod”

Proc Natl Acad Sci U S A. 1996 November 12; 93(23): 13416-13420.

Using data from a recent social experiment, ... We find that matching
based on the propensity score eliminates some but not all of the
measured selection bias, with the remaining bias still a substantial
fraction of the estimated impact.

We find that the support of the distribution of propensity scores for
the comparison group is typically only a small portion of the support
for the participant group.

For values outside the common support, it is impossible to reliably
estimate the effect of program participation using matching methods.
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Exploiting CIA
- Regression




l' ATE and ATOT under conditional mean independence

Recall

Average Treatment Effect

ATE = E(Y1 ) o E(YO ) @ Law of iterated expectations
(holds in general)

B EX[E(Y1 | X) (Y | X reqmres mean
_ EX[E(Y1 | D=1 ,X) Y | D = O X ] : independence
Average Treatment Effect on the Treated

ATOT =E(Y, |D=1)-E(Y, |D=1) @
:EX|D:1[E(Y1|D:1aX) Y |ID=1, X

= Eyou[E(Y, D =1,X)-E(Y, |D=0,X)]
=E(Y, |D =1)-Eyp4[E(Y, [D=0,X)]
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" ATE(x), ATOT(x) and Regression Notation

Special Case: Linear relationships

Y, =E
Y, =E

Y. | X]+U, =y, (X)+U, =a, +B, X+U,

Y, | X]+U, =4, (X)+U, =a, +B, X+U,

ATE(X) = 1, (X) - 1, (X) = (@, = 0, ) + (B, — B, ) X

ATOT(X) = b, (X) — o (X) +E[U, -U, | D =1,X]

= ATE(X)+E|U, -U, |D =1,X]

— (o, —a,)+(B, —B,) X+E[U, -U, |D=1,X]
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I'E CIA and Linearity (1)

Under the CIA assumption

E[Y,|D=1,X]=E[Y, |D=0,X]=E[Y, | X]
E[Y, |D=0,X]=E[Y, |D=1,X]=E[Y, | X]

ElU, |ID=1,X]=E[U, ID=0,X|=E[U, | X]=0
ElU, ID=0,X]=E|U, |D=1,X]=E[U, | X]=0

ATOT(X)=(a, —a,)+(B, -B,) X +E[U, -U, | D =1,X]
= (a, ~a,)+ (B, ~B,) X = ATE(X)
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I'E CIA and Linearity (II)

Under the CIA assumption
ATOT(X)=(a, —a,)+ (B, -B,) X +E[U, -U, | D =1,X]

= (a,—a,)+ (B, —B,) X = ATE(X)

Ingeneral, ATE —g, [ATE(X)] ATOT=E,, [ATOT(X)]
Under CIA and linearity

ATE,,, = %ZN:[(@ -8,)+(B, —ﬁo)'Xi]

ATOT,,, = 3 {6, ~6,)+ B, B, X,

1|1
N4

~ 1 R ~
Alternatively for ATOT ~ATOTg, = N—Z[Yﬁ — (0, +B, X, )}

1 i=1
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I'E CIA and Linearity (111)

SONCELANCR SEY

ATE,,, =

N4

R 1 N1 R A . R , A B 1 R A !
ATOTReg - N_Z [((]1 -, ) + ([31 - ﬁo) X.] ATOTReg - N_12|:Y1| — (ao + Bo Xi ):l
1=t =1

These estimators use the data more efficiently than the
nonparametric matching estimators. Indeed, if we further
assume that B,= B, then we can use OLS to estimate

Y =a, +(a, —a,)D +B X, +U

The OLS estimator of the coefficient of D is a consistent
estimator of ATOT and ATE.
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I'E CIA and Linearity (111)

%i[(eh _ao)+(61 _éo)'xi]
ATOT,, - Nii[(@ “é,)+ (B, ~Bo) X |

1 i=1

ATE,,, =

However, these estimators may rely heavily on extrapolation.

Counterfactuals are obtained straight from linearity

A 1 N At
ATOTReg — N_Z|:Y1i — (Go + Bo Xi ):|
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ﬂﬁ Angrist (1998)

Example (continued)

Estimating the Labor Market Impact of Voluntary
Military Service Using Social Security Data on
Military Applicants

Joshua D. Angrist
Econometrica, Vol. 66, No. 2. (Mar., 1998), pp. 249-288.
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.' Angrist (1998)

Angrist's almost saturated regression estimates

status. In the sample of men who applied in 1979-82, with AFQT scores in
groups III or IV, and earnings data in 1991 for both veterans and nonveterans,
there are 466 possible values of X for whites and 429 possible values of X for
nonwhites.?® As before, index these possible values by k = 1,..., K. Observations
on the dependent variable can then be written y,,, denoting average earnings
for men with veteran status D and covariate-combination k.

Regression estimates of the effect of military service are based on the
following model, estimated separately, for each calendar year and race group:

(17) Y= B+ &L+ €y,

where B, is an effect for covariate-combination k, «, is a veteran effect, and
€p; 1S an error term that is orthogonal to D and X by definition of S, and «,.
Estimates of «,, denoted a&,, were computed by weighted least squares using
population cell counts (N, ) as weights. This weighting scheme, when applied to
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[ ] EAngrist (1998)

“Difference in Means”
= Nalve estimates

“Controlled Contrasts”
= Matching via Stratification

,Regression Estimates”
= Almost saturated

Regression
(see equation (17) on prev. slide)

Whites Nonwhites
Difference Controlled fl-{egrcssion N\ Difference Controlled f-ﬁegrcssion N\
Mean in Means*® Contrast Estimates Mean in Means Contrast Estimates
Year (1) (2) (3) (4) (5) (6) (7 (8)
A. Earnings®
74 182.7 —26.1 —-14.0 -13.0 157.2 —4.9 -2.0 —3.9
(7.00 9.2) 9.4) 4.4) (6.0) (5.8)
75 2379 —41.4 —14.2 —12.0 216.9 -6 -17.1 —-15.2
(6.3) (7.6) (7.8) (4.5) (6.0) (5.5)
76 473.4 —47.9 —14.8 -12.7 413.6 —14.5 -33.3 -30.2
(8.1 (9.0) (9.3) 6.4) (8.0 (7.4)
77 1012.9 =71 —8.6 -94 820.9 -13.0 —-56.0 —51.3
(11.3) (12.3) (12.2) (9.1) (11.1) (10.0)
78 2147.1 40.3 —23.5 —22.4 1677.9 58.1 —53.6 —42.5
(16.7) (18.1) (17.2) (13.4) (16.1) (14.1)
79 3560.7 188.0 -8.4 -11.2 2797.0 340.3 119.1 122.3
(21.0) (23.2) (21.6) (16.2) (20.1) (17.2)
80 4709.0 572.9 178.0 175.9 3932.2 1154.3 741.6 738.5
(23.4) (27.2) (24.6) (18.0) (23.4) (19.5)
81 6226.0 855.5 249.5 249.9 5218.8 1920.0 1299.9 1318.5
(27.2) (32.4) (29.1) (20.7) (28.2) (23.1)
82 7200.6  1508.5 783.3 782.4 j6150.2  2917.1 2186.0 2210.1
(30.3) (36.4) (32.9) (23.4) (32.0) (26.0)
83 8398.1 1390.5 588.8 601.5 7221:1 2889.9 2103.8 2142.3
(34.4) (41.1) (36.6) (27.0) (36.7) (29.8)
84 9874.2 652.8 —235.7 —198.5 8377.2 22029 1333.0 1428.9
(39.5) (46.9) (41.7) (30.5) (41.4) (33.4)
85 109727 469.8 =521.3 —459.6 9306.8 1955.5 932.3 1059.2
(44.6) (52.6) (46.8) (34.4) (46.2) (37.3)
86 120045 543.7 —337.3 —491.7 10106.2 1881.3 720.9 8723
(50.4) (59.0) (52.5) (38.7) (51.2) (41.6)
87  13045.7 663.9 —548.0 —464.3 10833.0 2050.1 751.0 925.0
(54.6) (63.9) (56.8) (41.8) (55.2) (44.8)
88  14136.1 904.3 —415.5 =311.7 1480.1 2175.0 708.2 923.7
(58.3) (68.2) (60.6) (44.9) (59.9) (48.1)
89  14716.1 1169.1 —248.6 —136.3 17514  2379.1 799.7 1031.9
(61.0) (71.2) (63.2) (47.6) (62.7) (50.9)
90  14886.1 1300.8 —154.5 —53.2 1904.3 2483.6 824.9 1064.0
(63.0) (73.6) (65.2) (49.4) (65.4) (52.7)
91 14407.9 1559.6 29.8 146.2 1518.7 2758.8 1026.1 1277.9
(64.6) (75.6) \_ (669 J (50.8) (67.2) \ (54.3)
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.' Angrist (1998)

Comparing matching and regression estimates:

fects by the proportion of veterans at each value of X. In practice, the
regression and matching estimates are almost identical through 1984, This can
be seen in Table II, which reports @, as well as a. for each year. In contrast
with the 1974-84 results, however, regression estimates for each year after 1984
are larger than the corresponding matching estimates. The largest difference is

Why are they different after 19847 Because they put
different weights on conditional contrasts (see also next slide )

race groups. The matching estimator gives the small covariate-specific estimates
for men with high probabilities of service the most weight, while the larger
covariate-specific estimates for men with low probability of service are given less
weight. The regression estimator, in contrast, gives more weight to covariate-
specific estimates where the probability of military service conditional on covari-
ates is close to one-half. This leads to a higher overall treatment effect.



ﬂﬁ Angrist (1998)

Matching vs. OLS-Regression

For the simple case of a binary X-variable Angrist shows that

“the difference between matching and OLS is in the nature of the
weights (of contrasts) at values of x where both veterans and
nonveterans are observed.

Matching weights each of the underlying treatment effects by P[D= 1
| X]P [ X],whereas OLS regression weights each of the underlying
treatment effects by P[D=1 IX](1 -P[D=11X])P [ X].

In other words, the weights underlying matching are proportional to
the probability of veteran status at each value of the covariates while
the weights underlying OLS regression are proportional to the
variance of veteran status at each value of the covariates.”
=>»Matching puts more weights on ATOT(x) if x values are important
in treatment group, OLS on those x with a larger variance of D.
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"E Matching vs. Regression

Angrist & Pischke:

“We believe regression should be the starting point for
most empirical projects... The first reason why we don’t
find ourselves on the propensity score bandwagon are
practical: there are many details to be filled in when
Implementing propensity score matching, such as how to
model the score and how to do inference; these are
details not yet standardized.”
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I'E Matching vs. Regression

Angrist & Pischke (p.86):

“Moreover, ..there isn’'t very much theoretical daylight
between regression and propensity score weighting. If
the regression model for covariates is fairly flexible, say,
close to saturated, regression can be seen as a type of
propensity score weighting, so the difference is mostly in
the implementation.”
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"E Anti-CIA(Matching)Heckman Nobel Lecture

Heckman Nobel Lecture - MICRODATA,
HETEROGENEITY AND THE
EVALUATION OF PUBLIC POLICY

“If there were no unobservables, or if fortuitously
conditioning on X eliminated mean differences in
unobservables, as is assumed by statisticians who
advocate the method of matching, then the selection
bias term vanishes. Yet the poor fit of most microdata
equations suggests that the assumption of no
unobservables is unacceptable. Reliance on matching is
an act of faith.”

CIA: E[U,|D=0,X]=E[U, |D=1,X]=E[U, | X]=0 o



l'ﬁ Guido Imbens

“In the debate (about the plausibility of the CIA)
it has been argued that agents’ optimizing
behavior precludes choices being independent
of the potential outcomes. This seems an
unduly narrow view. In response | will offer
three arguments for considering

these assumptions....."

110



l' Guido Imbens

The first i1s a statistical, data-descriptive motivation. A
natural starting point in the evaluation of any program is a
comparison of average outcomes for treated and control
units. A logical next step is to adjust any difference in
average outcomes for differences in exogenous background
characteristics (exogenous in the sense of not being affected
by the treatment). Such an analysis may not lead to the final
word on the efficacy of the treatment, but its absence would
seem difficult to rationalize in a serious attempt to under-
stand the evidence regarding the effect of the treatment.
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.'E Guido Imbens

A second argument is that almost any evaluation of a
treatment involves comparisons of units who received the
treatment with units who did not. The question is typically
not whether such a comparison should be made, but rather
which units should be compared, that is, which units best
represent the treated units had they not been treated. Eco-
nomic theory can help in classifying variables into those
that need to be adjusted for versus those that do not, on the
basis of their role in the decision process (for example,
whether they enter the utility function or the constraints).
Given that, the unconfoundedness assumption merely as-
serts that all variables that need to be adjusted for are
observed by the researcher. This is an empirical question,
and not one that should be controversial as a general
principle. It is clear that settings where some of these
covariates are not observed will require strong assumptions
to allow for identification. Such assumptions include instru-
mental variables settings where some covariates are as-
sumed to be independent of the potential outcomes. Absent

those assumptions, typically only bounds can be identified
(as in Manski, 1990, 2003).

112



l' Guido Imbens

A third, related argument is that even when agents choose
their treatment optimally, two agents with the same values
for observed characteristics may differ in their treatment
choices without invalidating the unconfoundedness assump-
tion if the difference in their choices is driven by differences
in unobserved characteristics that are themselves unrelated
to the outcomes of interest. The plausibility of this will
depend critically on the exact nature of the optimization

process faced by the agents. In particular it may be impor-
tant that the objective of the decision maker is distinct from
the outcome that is of interest to the evaluator. For example,
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