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Conditional Independence
- Matching and Regression
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A&P, p. 64: Good controls are variables that we can
think of as having been fixed at the time the regressor of
interest was determined.
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Let X denote a (vector of) observable explanatory variables

Treatment effects for individuals with characteristics X.

Definition of ATE and ATOT conditional on X

( ) [ ]
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X|Y-YEXATE
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( ) [ ]
[ ] [ ]X1,D|YEX1,D|YE

X1,D|Y-YEXATOT

01

01

=−==

==



4

Average Treatment Effect 

Average Treatment Effect on the Treated

Conditional and unconditional ATE and ATOT

( ) ( )01 YEYEATE −= ( )[ ]XATEEX=

[ ] [ ]{ } ( )dx xfxX1,D|YExX1,D|YE 1D |X01 =⋅==−=== ∫

( ) ( )dx xfxATE X⋅= ∫
[ ] [ ]{ } ( )dx xfxX|YExX|YE x01 ⋅=−== ∫

( )[ ]1D|XATOTE 1D |X == = ( ) ( )∫ =⋅= dx xfxATOT 1D |X

Law of iterated expectations:
EX[E(Y|X)] = E(Y) 

( ) ( )1D|YE1D|YEATOT 01 =−==

Law of iterated
expectations:

EX[E(Y|X)] = E(Y) 
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ATE(x), ATOT(x) and Regression Notation

00000

11111

)X(μX]|[
)X(μX]|[

UUYEY
UUYEY
+=+=
+=+=

( ) [ ] [ ] [ ]
)X(μ)X(μ

X|YEX|YEX|Y-YEXATE

01

0101

−=

−==

( ) [ ] [ ] [ ]
[ ]
[ ] [ ]X1,D|UEX1,D|UE)X(μ)X(μ

X1,D|U-UE)X(μ)X(μ
X1,D|YEX1,D|YEX1,D|Y-YEXATOT

0101

0101

0101

=−=+−=

=+−=

=−====



6

Special Case: Linear relationships

ATE(x), ATOT(x) and Regression Notation
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As a single equation:

Special case: Linear relationships

ATE(x), ATOT(x) and Regression Notation
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Conditional Independence Assumption (CIA): 

(Y1,Y0) are indepedent from D, conditional on X
Formally: 

This implies Mean Independence:

The Conditional Independence Assumption

( ) X|DY,Y 01 ⊥

[ ] [ ] [ ]X|YEX0,D|YEX1,D|YE 111 ====

[ ] [ ] [ ]X|YEX1,D|YEX0,D|YE 000 ====
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( ) ( )[ ]X0,D|YEX1,D|YEE 011D |X =−== =

Average Treatment Effect 

Average Treatment Effect on the Treated

ATE and ATOT under conditional mean independence

( ) ( )01 YEYEATE −=

( ) ( )[ ]X|YEX|YEE 01X −=

( ) ( )[ ]X0,D|YEX1,D|YEE 01X =−==

Law of iterated expectations 
(holds in general)

( ) ( )1D|YE1D|YEATOT 01 =−==

requires mean 
independence

( ) ( )[ ]X1,D|YEX1,D|YEE 011D |X =−== =

( ) ( )[ ]X0,D|YEE-1D|YE 01D |X1 === =
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This implies

However, in general ATE ≠ ATOT. Why?

Distributions of X in population and in D=1 group may differ

ATE and ATOT under conditional mean independence

( ) ( )XATOTXATE =

( ) ( )∫ =⋅≠ dx xfxATOT 1D |X( ) ( )dx xfxATE X⋅∫

[ ] [ ]X|YEX|YE 01 − [ ] [ ]X1,D|YEX1,D|YE 01 =−==

[ ] [ ] [ ]X|YEX0,D|YEX1,D|YE 111 ====

[ ] [ ] [ ]X|YEX1,D|YEX0,D|YE 000 ====
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The 1st term can simply be estimated by

Using the law of iterated expectations for the 2nd term:

Hence, for ATOT mean independence for Y0 is sufficient

Implying:

For ATOT, a weaker version of CIA is sufficient

( ) ( )[ ]X0,D|YEE1D|YEATOT 01D |X1 =−== =

( ) ( )X0,D|YEX1,D|YE 00 ===

( ) ( )1D|YE1D|YEATOT 01 =−==

( ) ( )[ ]X1,D|YEE1D|YE 01D |X0 === =

∑
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=
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( ) ( )

( )
( )
( )
( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=⋅=

+=⋅=

+=⋅=

−==

=⋅=−== ∑

1)D|f(x    x0,D|YE
  1)D|f(x    x0,D|YE

1)D|f(x    x0,D|YE
1D|YE

1)D|f(xx0,D|YE1D|YEATOT

220

110

000

1

x,x,x
01

210

Visualization of LIE and ATOT

Y1, Y0, 
X

Y1, Y0, 
X

D=0

D=1

f(x)

x
x0 x1 x2

f(x2)
f(x1)

f(x0)

f(x0)

f(x1)

f(x2)

Grundgesamtheit



13

CIA:

This will be satisfied, if X contains all variables, 
influencing potential outcomes (Y1,Y0) and selection (D) 
into treatment.

The variables in X are `pre-treatment‘, i.e. they may not 
be affected by receiving (or not receiving) the treatment. 

Which X? (I)

( )  χx   x;X|DY,Y 01 ∈∀=⊥

( ) ( )[ ]X0,D|YEE1D|YEATOT 01D |X1 =−== =

( )[ ] [ ] ( )∫ == ⋅==== dx xfxX1,D|YEX0,D|YEE 1D |X001D |X

Here, we use distribution of X among D=1, to get their counterfactual in the 
absence of treatment. Won‘t work if distrribution of X is altered by treatment.



14

Conditional Independence Assumption (CIA): 

(Y1,Y0) are indepedent from D, conditional on X
Formally: 

Hence

and in particular

CIA revisited

( ) X|DY,Y 01 ⊥

[ ] [ ] [ ]X|YfX0,D|YfX1,D|Yf 111 ====
[ ] [ ] [ ]X|YfX1,D|YfX0,D|Yf 000 ====

[ ] [ ] [ ]X|YEX0,D|YEX1,D|YE 111 ====

[ ] [ ] [ ]X|YEX1,D|YEX0,D|YE 000 ====

This identifying assumption can not be 
directly tested because it involves 
counterfactual distributions
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Conditional Independence Assumption (CIA): 

(Y1,Y0) are indepedent from D, conditional on X
Formally: 

Independence is symmetric. That is, D is independent 
from (Y1,Y0):

or equivalently

CIA revisited (2)

( ) X|DY,Y 01 ⊥

[ ] [ ]X|1DPX,Y,Y|1DP 01 ===

[ ] [ ]X|1DPX,U,U|1DP 01 ===

„Selection on the observables“
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Intuitively, this assumes that, conditioning on observable
covariates, we can take assignment to treatment to have 
been random and that, in particular, unobservables play 
no role in the treatment assignment; comparing two 
individuals with the same observable characteristics, 
one of whom was treated and one of whom was not, is 
like comparing those two individuals in a randomized 
experiment. 

Dehejia and Wahba (2002)

CIA revisited (3)

[ ] [ ]X|1DPX,Y,Y|1DP 01 ===

[ ] [ ]X|1DPX,U,U|1DP 01 ===
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CIA revisited

[ ] [ ]X|1DPX,Y,Y|1DP 01 ===

[ ] [ ]X|1DPX,U,U|1DP 01 ===

“From an economic standpoint, this assumption 
rules out selection on the basis of unobservables 
(U1,U0) that may be partially known to people taking 
training but are unknown to the observing 
economist. … It defines an implicit model that 
assumes that agents do not enter the program on 
the basis of gains unobserved by analysts.“

(Heckman, Lalonde and Smith)
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CIA revisited

[ ] [ ] P(X)X|1DPX,Y,Y|1DP 01 ====

[ ] [ ] P(X)X|1DPX,U,U|1DP 01 ====

Propensity Score
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The conditional independence assumption that motivates 
the use of regression and matching is most plausible 
when researchers have extensive knowledge of the 
process determining treatment status. An example in this 
spirit is the Angrist (1998) study of the effect of voluntary 
military service on the civilian earnings of soldiers after 
discharge. …. The CIA seems plausible in this context 
because soldiers are selected on the basis of a few well-
documented criteria related to age, schooling, and test 
scores and because the control group also applied to 
enter the military.

Joshua Angrist (The New Palgrave, 2008)

(When) Is the CIA plausible?
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( ) ( )[ ]X0,D|YEX1,D|YEE 011D |X =−== =

Common Support

( ) ( )01 YEYEATE −=

( ) ( )[ ]X0,D|YEX1,D|YEE 01X =−==

Using 
LIE and CIA

( ) ( )1D|YE1D|YEATOT 01 =−==

( ) ( )[ ]X0,D|YEE-1D|YE 01D |X1 === =

Using 
LIE and 

CIA

Need to compute these for all X with f(X)>0
E[·] is w.r.to f(X)

E[·] is w.r.to f(X|D=1)
Need to compute this for all X with f(X|D=1)>0

But what if, say, P(D=1|X)=0 for some X? 
Can estimate ATE and ATOT only over “common support”
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Common support: all values of X for which  

alternatively:

all values of X for which f(X|D=1)>0 and f(X|D=0)>0

Hence, with this approach, we can aim only for ATE and 
ATOT over the common support

Common Support (II)

( ) 1X|1DP <=

( )[ ]1X|1DP 1,D|YYEATOT 01CS <==−=

( )[ ]1X|1DP0|YYEATE 01CS <=<−=
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Exploiting CIA 
- Matching
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Estimation by Stratification
Suppose X is discrete and can take on only the following 
values:

Example:

Estimating ATOT using CIA

{ }Kk1 x,...,x,...,x
[ ]21 XXX =

987

654

321

xxx9

xxx5.8

xxx7

5.325.1

1X

2X Each combination of values 
of X1 and of X2 forms a „cell“ 
and (in a slight abuse of notation)

a value of X (viewed as the collection of 

X1 and of X2). Hence, the 
possible outcomes of X

are x1, x2, …, x9
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Estimation by Stratification
Suppose X is discrete and can take on only the following 
values:

Let N1k denote the number of treatment group 
observations in the population with X=xk

and let n1k and n0k be similarly defined sample 
ferquencies for treatment and control group members.

Estimating ATOT using CIA

{ }Kk1 x,...,x,...,x
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Estimation by Stratification
X discrete with                            

and N1k , n1k and n0k be # of obs. with X=xk in resp. group

Estimating ATOT using CIA

{ }Kk1 x,...,x,...,x

987

654

321

xxx9

xxx5.8

xxx7

5.325.1

1X

2X

191817

161514

131211

NNN9

NNN5.8

NNN7

5.325.1

1X

2X

191817

161514

131211

nnn9

nnn5.8

nnn7

5.325.1

1X

2X

population frequencies
in treatment group

sample frequencies
in treatment group
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Estimation by Stratification

δk is an indicator function (=1 if argument is true, 0 otherwise) 

Estimating ATOT using CIA

[ ]0k1k

K

1k
K

1k
1kk

1kk
Str YY

Nδ

NδTOTÂ −⋅
⋅

⋅
= ∑

∑=

=

[ ]0n 0,n Iδ 0k1kk >>=

∑
=∩=

=
kxiX1iD: i
1i

1k
1k Y

n
1Y ∑

=∩=

=
kxiX0iD: i
0i

0k
0k Y

n
1Y

sum over all cells
(all outcomes of X)

if N1ks are not known,
use n1ks instead
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Estimation by Stratification
Note how 

is „imitating“ the population version of ATOT under CIA

Indicator function δk is enforcing common support.

Weights

correspond to f(X|D=1).

Estimating ATOT using CIA

[ ]0k1k

K

1k
K

1k
1kk

1kk
Str YY

Nδ

NδTOTÂ −⋅
⋅

⋅
= ∑

∑=

=

( ) ( )[ ]X0,D|YEX1,D|YEEATOT 011D |X =−== =

∑
=

⋅⋅
K

1k
1kk1kk NδNδ
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Estimating the Labor Market Impact of Voluntary 
Military Service Using Social Security Data on 
Military Applicants

Joshua D. Angrist
Econometrica, Vol. 66, No. 2. (Mar., 1998), pp. 249-288.

Angrist (1998)
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What is the labor-market value of service in the volunteer military?

Many econometric studies have compared the earnings of veterans 
and nonveterans.

The proper interpretation of results from such studies is unclear, 
however, because veterans are both self-selected and screened by 
the military.

The problem of selection bias plagues almost all evaluation research 
outside of randomized trials. 

This paper presents evidence from two new strategies for estimating 
the effect of voluntary military service on the earnings and 
employment status of veterans.

His strategies are Matching (covered now) and IV (covered later)

Angrist (1998)
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Arguments for his Matching Strategy (1)

First, comparisons by veteran status are restricted to a sample of 
applicants to the military, only about half of whom actually enlist. 
Nonenlisting applicants probably provide a better control group for 
veterans than conventional cross-section samples because, like 
veterans, applicants have indicated a strong interest in military 
service. 

Moreover, the data analyzed here contain information on most of the 
characteristics used by the military to screen applicants. The 
selection bias induced by military screening can therefore be 
eliminated using regression techniques or by matching on the 
covariates used in the screening process.

Angrist (1998)
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The data
Administrative data from US military 

+ Earnings data from Social Security Administration 

The military data: information on applicants and 
entrants to the military for each fiscal year. 
Information at the time of application:
• basic demographic variables,
• physical examination results, 
• test scores. 

SSA keeps track of the earnings of all workers covered 
by Social Security

Angrist (1998)
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The data

Random sample from military data is matched to SSA 
earnings histories. Limited to 
• men aged 17-22 who applied during 1976-82, 
• had valid sex and race codes, 
• data on Armed Forces Qualification Test scores
• at least a 9th grade education 
• but no more than a 4-year college degree.

Target population: 2.2 million white men and 900,000 
nonwhite men. 

Angrist (1998)
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The data

Target population: 
2.2 million white men and 900,000 nonwhite men. 

Matched sample: 697,944 applicants with  Social 
Security earnings for each year from 1974 through 1991.
Used for descriptive analysis 

Estimates of causal effect based on restricted* sample 
of applicants
• who applied from 1979-82, 
• with AFQT scores in groups III and IV. 
• contains 128,968 whites and 175,262 nonwhites.

* the restrictions are motivated by imposed to aid IV estimation

Angrist (1998)
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More about the data (from a cohort perspective)

Angrist (1998)
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More about the data:

“The typical applicant in the matched sample was

• aged 18-20 at the time he applied, 

• had an 11th or 12th grade education, 

• and scored in the lower to middle range of the AFQT scale. 

• roughly 30 percent of applicants in the sample were aged 18 
when they applied to the military, 25 percent were aged 19, and 
16 percent were aged 20. 

• A total of 40 percent of applicants in the sample were high 
school graduates, 4 percent were GED certified, and 34 percent 
had completed 11th grade only. Out of nearly 700,000 applicants 
in the sample, only 739 were college graduates.”

Angrist (1998)
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What is Y?
Two outcomes: earnings and employment status.
We focus on his results on earnings

“The primary purpose of this paper is to estimate the 
impact of military service on the earnings of veterans.”

Angrist (1998)
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“Simple comparisons by veteran status can be used to 
estimate E[Y1 – Y0 I D =1]. Because the sample used 
here includes only applicants to the military, these
comparisons control for differences between veterans 
and nonveterans that originate in the decision to apply to 
the military.”

Angrist (1998)



38

Angrist (1998)

“The sample is restricted to applicants with 
AFQT scores in the middle range….
In 1979, 67 percent of white applicants and 
78 percent of nonwhite applicants had 
AFQT scores in categories III and IV, 
corresponding to the 10th through 64th 
percentiles of the AFQT reference 
population.”

“In the sample of 1979-82 applicants with 
AFQT scores in categories III and
IV, veterans earned more than nonveterans 
in every year in which they applied
to the military. This can be seen in Figure 2, 
which plots earning profiles by
veteran status and application year.”
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Angrist (1998)
First the raw differences

“Differences in earnings by veteran status are 
reported with standard errors in columns 2 and 6 
of Table 11, separately by race. 

Because the sample is so large, all of the post-
1978 differences are very precisely measured 
and significantly different from zero. Some of the 
earlier small differences are significant as well. 

The veteran earnings gap reached a peak of 
1500 dollars for whites and 2900 dollars for 
nonwhites in 1982-83, and remained substantial 
through the end of the sample period. 

The fact that pre-application-year differences are 
small tends to support the interpretation of the 
veteran/nonveteran contrast as an unbiased 
estimate of E[Y1-Y0|D=1]. 
In Section 4, however, I show that these simple 
contrasts are misleading.

What do the numbers mean? “To save space, differences in the table are for earnings averaged across application cohorts”. 

Recall: sample 
members applied 
during 1976-82. 
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Arguments for his Matching Strategy (2)

Because the sample is confined to applicants, comparisons of 
earnings by veteran status such as those in Table II control for
veterans' decisions to apply to the military. 

On the other hand, veterans are carefully selected by the military on 
the basis of personal characteristics, like schooling and test scores, 
that are clearly related to future earnings. This fact motivates the 
matching estimator. 

It is worth mentioning again, however, that the modest pre-
application provide little evidence of selection bias. Of course, part 
of the problem with the use of such early comparisons as a 
specification check is that earnings or labor force participation as a 
teenager may not be related to earnings potential as an adult.

Angrist (1998)
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What is X?
In practice, the observed covariates take on values in the 
set of all possible combinations of 

• race, 
• application year, 
• schooling at the time of application, 
• Armed Forces Qualification Test  (AFQT) score  group
• year of birth.

466 possible values of X for whites and 429 possible 
values of X for nonwhites

Angrist (1998)



42

Is there a common support problem?

„In practice, it can happen that some population cells 
where both treatment and control observations are 
available nevertheless remain unrepresented in a 
random sample. In this study, however, the sample was 
drawn conditional on X. Therefore, sample observations 
on both veterans and nonveterans are necessarily
available wherever the population probability of 
treatment is neither zero nor one“

Angrist (1998)
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Angrist (1998)
Matching estimator:  Stratification

Micro data of 697644 persons from Military applicants data base can 
be linked via SSN to Social Security Earnings records. Angrist only 
obtained cell-wise information: counts, average and standard 
deviation of earnings. 
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n
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=
kxiX0iD: i
0i
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0k Y

n
1Y

sum over all cells
(all outcomes of X)
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Angrist (1998)
“Matching estimates (averaged over 
application cohorts) of veteran effects 
suggest that the simple comparisons of
earnings by veteran status overestimate 
the effect of military service on earnings
and employment. 

For whites, they range from a high of 
only 783 dollars in 1982 to a low of -557 
dollars in 1986. Standard errors for these
estimates are less than 60 dollars. It is 
negative in every year after 1983 except 
1991.

Effects for nonwhites are much larger 
although they are also substantially 
smaller than the corresponding simple 
comparisons. The largest estimate is 
2,186 dollars in 1982 and the smallest is 
708 dollars in 1988. 

The 1991 estimate of 1,026 dollars for 
nonwhites is less than 9 percent of 
nonwhite's average 1991 FICA earnings. 
The 1991 estimate for whites is about
30 dollars and is not statistically different 
from zero. 
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General Matching Estimator

where

where the weights sum to one:

Example

Estimating ATOT using CIA
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Several approaches exist to match treatment group 
observation i with control group observation(s) :

• k-Nearest-Neighbor-Matching (k may be one)
• Caliper Matching:

use all comparison group observations within a 
specified radius (“caliper”) 

• Blockwise Matching
• Kernel Matching

We can match with or without replacement.

How observations are matched
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Kernel Estimator of  ATOT („Kernel Matching“)

Estimating ATOT using CIA
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Kernel Estimator of ATOT („Kernel Matching“)

Estimating ATOT using CIA

( ) ( )[ ]X0,D|YEE-1D|YEATOT 01D |X1 === =
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Nadaraya-Watson Kernel Regression Estimator

( )
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Recall: Kernel Estimator of E[Y|X=x]
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In our specific application
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Kernel K(u)

Uniform

Triangle
Epanechnikov
Quartic
Triweight
Gaussian
Cosinus

Kernel function
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( ) ( )1uu1
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35 32 ≤⋅− I

⎟
⎠
⎞

⎜
⎝
⎛− 2u

2
1exp

2π
1

( )1uu
2
πcos

π
4

≤⋅⎟
⎠
⎞

⎜
⎝
⎛ I

I = Indicator function
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Kernel functions
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Multivariate Kernel Regression

Multivariate Nadaraya-Watson-Kernel Estimator

Suffers from the curse of dimensionality

( ) ( ) ( )xmX,..,X|YEX|YE K1 ==
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1j k

1kj

2

12j
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11j

k

1ki

2

12i

1

11i

k21H Y

h
xX

,...,
h

xX
,

h
xX

Κ

h
xX,...,

h
xX,

h
xXΚ
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⎝

⎛ −−−

⎟⎟
⎠

⎞
⎜⎜
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Definition Propensity Score:

The `Propensity Score‘ is the conditional probability of 
receiving the treatment (or the fraction of the population  
with charactersitics X belonging to the treatment group)

• It maps the multidemsional X (which is shorthand for 
X1, X2, …, Xk ) into the scalar 0 ≤ P(X) ≤ 1

• If we knew P(Xi) for each individual i, then we could 
look for matches with respect to this scalar (rather than 
the multidimensional X)

Is this justified? 

Matching on the Propensity Score (I)

( ) ( ) ( )X|DEXPX,...,X|1DP k1 ===
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Is matching on the propensity score justified? 

Yes!

If independence of the potential outcomes from the 
treatment holds conditional on X, then it also holds 
conditional on P(X). That is, CIA for X implies CIA for P(X)!
In terms of the means:
If

then

Matching on the Propensity Score (II)

( ) ( ) ( )XP|DY,Y  X|DY,YIf 0101 ⊥⇒⊥

( )[ ] ( )[ ] ( )[ ]XP|YEXP0,D|YEXP1,D|YE 111 ====
( )[ ] ( )[ ] ( )[ ]XP|YEXP1,D|YEXP0,D|YE 000 ====

[ ] [ ] [ ]X|YEX0,D|YEX1,D|YE 111 ====
[ ] [ ] [ ]X|YEX1,D|YEX0,D|YE 000 ====



55

Proof:
What we need to show is that

Preliminary result: „Balancing property of P(X)“

Matching on the Propensity Score (III)

( ) ( ) ( )XP|DY,Y  X|DY,Y 0101 ⊥⇒⊥

( )[ ] ( )[ ]XP |1DPXP , Y,Y|1DP 01 ===

[ ] [ ]X |1DPX , Y,Y|1DP  if 01 ===

( )XP|XD ⊥

( )( ) ( )( )XP|1DPXPX,|1DP   i.e. ===

( )( ) ( )( )XP0,D|XfXP1,D|Xf   or ===
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Proof:

Matching on the Propensity Score (IV)

( )( ) ( )( ) ( ) ( )
( )XP

X|1DPX|DEXPX,|DEXPX,|1DP
=

=====

( )XP|XD ⊥

( ) ( ) ( )X|DEXPX,...,X|1DP k1 ===

( )[ ] ( )[ ] ( )[ ] ( ){ }
( ) ( )[ ]

( )XP
XP|XPE

XP|XPX,|DEEXP|DEXP|1DP

=

=

===

( )( ) ( )( )XP0,D|XfXP1,D|Xf   ===⇒

( )( ) ( )( )XP|1DPXPX,|1DP   thatshow ===
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Numerical Example:

f(X) P(D=1|X)

X
1 100 0.5 0.9
2 40 0.2 0.9
3 20 0.1 0.2
4 40 0.2 0.4

200 1

( )( ) ( )( )?XP|1DPXPX,|1DP  Is ===

( )( ) ( )
( ) 901

90
.)(1X|1DP

2X1X1,X|1DP.XP1,X|1DP
=====

=∪=======
P

( )( ) ( )
( ) 902

90
.)(2X|1DP

2X1X2,X|1DP.XP2,X|1DP
=====
=∪=======

P
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Numerical Example:

( )( ) ( )( )
( )

( )
( )

( ) ( )

7140
24706160

6160

9090

.
..

.
1D|2XP1D|1XP

1)D|1X(
1D|2X1XP

1)D|2X1X1X(
2X1X1,D|1XP

.XP1,D|1XP.XP1,D|1Xf

=
+

=

==+==
==

=

==∪=
==∪=∩=

=

=∪====
=======

P

P

f(X) P(D=1|X) D=1 D=0 f(X|D=1) f(X|D=0)

X
1 100 0.5 0.9 90 10 0.616 0.185
2 40 0.2 0.9 36 4 0.247 0.074
3 20 0.1 0.2 4 16 0.027 0.296
4 40 0.2 0.4 16 24 0.110 0.444

200 1 146 54 1

( )( ) ( )( )?XP0,D|XfXP1,D|Xf  Is ===
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Numerical Example:

( )( ) ( )( )
( )

( )
( )

( ) ( )

7140
07401850

1850

9090

.
..

.
0D|2XP0D|1XP

0)D|1X(
0D|2X1XP

0)D|2X1X1X(
2X1X0,D|1XP

.XP0,D|1XP.XP0,D|1Xf

=
+

=

==+==
==

=

==∪=
==∪=∩=

=

=∪====
=======

P

P

f(X) P(D=1|X) D=1 D=0 f(X|D=1) f(X|D=0)

X
1 100 0.5 0.9 90 10 0.616 0.185
2 40 0.2 0.9 36 4 0.247 0.074
3 20 0.1 0.2 4 16 0.027 0.296
4 40 0.2 0.4 16 24 0.110 0.444

200 1 146 54 1

( )( ) ( )( )?XP0,D|XfXP1,D|Xf  Is ===
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Numerical Example:

( )( ) ( )( )
2860

9090
.

.XP0,D|2Xf.XP1,D|2Xf
=

=======

f(X) P(D=1|X) D=1 D=0 f(X|D=1) f(X|D=0)

X
1 100 0.5 0.9 90 10 0.616 0.185
2 40 0.2 0.9 36 4 0.247 0.074
3 20 0.1 0.2 4 16 0.027 0.296
4 40 0.2 0.4 16 24 0.110 0.444

200 1 146 54 1

In the same way, it can be shown that

Hence,

f(X) P(D=1|X) D=1 D=0 f(X|D=1) f(X|D=0)f(X|D=1,P(X)=0.9) f(X|D=0,P(X)=0.9)

X
1 100 0.5 0.9 90 10 0.616 0.185 0.714 0.714
2 40 0.2 0.9 36 4 0.247 0.074 0.286 0.286
3 20 0.1 0.2 4 16 0.027 0.296
4 40 0.2 0.4 16 24 0.110 0.444

200 1 146 54 1

( )( ) ( )( )   xall for.XP0,D|Xf.XP1,D|Xf 9090 =====
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Numerical Example:
f(X) P(D=1|X) D=1 D=0 f(X|D=1) f(X|D=0)f(X|D=1,P(X)=0.9) f(X|D=0,P(X)=0.9)

X
1 100 0.5 0.9 90 10 0.616 0.185 0.714 0.714
2 40 0.2 0.9 36 4 0.247 0.074 0.286 0.286
3 20 0.1 0.2 4 16 0.027 0.296
4 40 0.2 0.4 16 24 0.110 0.444

200 1 146 54 1

( )( ) ( )( )   xall for.XP0,D|Xf.XP1,D|Xf 9090 =====

Smith and Todd (2003)
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Proof:

Matching on the Propensity Score (V)

( ) ( ) ( )XP|DY,Y  X|DY,Y 0101 ⊥⇒⊥

( )[ ] ( )[ ]
( )[ ] ( ){ }

[ ] ( ){ }
[ ] ( ){ }
( ) ( )[ ] ( )XPXP , Y,Y|XPE

XP , Y,Y|X|DEE
XP , Y,Y| Y,YX,|DEE

XP , Y,Y|XP, Y,YX,|DEE
XP , Y,Y|DEXP , Y,Y|1DP

01

01

0101

0101

0101

==

=

=

=

==

( )[ ] ( )[ ]XP |1DPXP , Y,Y|1DP 01 ===⇒

( )[ ] ( )[ ]XP |1DPXP , Y,Y|1DP  thatshow 01 ===

( )[ ] ( )XPXP|1DP  But ==
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This implies:

Matching on the Propensity Score (VI)

( )[ ] ( )[ ] ( )[ ]XP|YEXP0,D|YEXP1,D|YE 111 ====
( )[ ] ( )[ ] ( )[ ]XP|YEXP1,D|YEXP0,D|YE 000 ====

( ) ( )XP|DY,Y 01 ⊥

( ) ( )[ ]P(X)0,D|YEP(X)1,D|YEE 011D |P(X) =−== =

( ) ( ) ( ) ( )[ ]P(X)|YEP(X)|YEEYEYEATE 01P(X)01 −=−=

( ) ( )[ ]P(X)0,D|YEP(X)1,D|YEE 01P(X) =−==

( ) ( )1D|YE1D|YEATOT 01 =−==
( ) ( )[ ]P(X)1,D|YEP(X)1,D|YEE 011D |P(X) =−== =

( ) ( )[ ]P(X)0,D|YEE-1D|YE 01D |P(X)1 === =
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Numerical Example:

f(X) P(D=1|X) D=1 D=0 f(X|D=1) f(X|D=0) E[Y1|X] E[Y0|X] ATE(X) ATE(X)*f(X|D=1)

X
1 100 0.5 0.9 90 10 0.616 0.185 4 2 2 1.23287671
2 40 0.2 0.9 36 4 0.247 0.074 6 5 1 0.24657534
3 20 0.1 0.2 4 16 0.027 0.296 2 3 ‐1 ‐0.02739726
4 40 0.2 0.4 16 24 0.110 0.444 1 4 ‐3 ‐0.32876712

200 1 146 54 1 1.12328767

Do we get the same answer from

and

( ) ( )[ ]X0,D|YEX1,D|YEEATOT 011D |X =−== =

Based on CIA [ ] [ ] [ ]X|YEX0,D|YEX1,D|YE 111 ====

[ ] [ ] [ ]X|YEX1,D|YEX0,D|YE 000 ====

( )[ ] ( )[ ] ( )[ ]XP|YEXP0,D|YEXP1,D|YE 111 ====

( )[ ] ( )[ ] ( )[ ]XP|YEXP1,D|YEXP0,D|YE 000 ====

( ) ( )XP|DY,Y 01 ⊥

( ) ( )[ ]P(X)0,D|YEP(X)1,D|YEEATOT 011D |P(X) =−== =
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Numerical Example:

f(X) P(D=1|X) D=1 D=0 f(X|D=1) f(X|D=0) E[Y1|X] E[Y0|X] ATE(X) ATE(X)*f(X|D=1)

X
1 100 0.5 0.9 90 10 0.616 0.185 4 2 2 1.23287671
2 40 0.2 0.9 36 4 0.247 0.074 6 5 1 0.24657534
3 20 0.1 0.2 4 16 0.027 0.296 2 3 ‐1 ‐0.02739726
4 40 0.2 0.4 16 24 0.110 0.444 1 4 ‐3 ‐0.32876712

200 1 146 54 1 1.12328767

We need to calculate

using ( )[ ] ( )[ ] ( )[ ]XP|YEXP0,D|YEXP1,D|YE 111 ====

( )[ ] ( )[ ] ( )[ ]XP|YEXP1,D|YEXP0,D|YE 000 ====

( ) ( )[ ]P(X)0,D|YEP(X)1,D|YEEATOT 011D |P(X) =−== =

f(P(X)|D=1) f(P(X)|D=0) E[Y1|P(X)] E[Y0|P(X)] ATE(P(X))
0.2 0.027 0.296 2 3 ‐1 ‐0.02739726

P(X) 0.4 0.110 0.444 1 4 ‐3 ‐0.32876712
0.9 0.863 0.259 4.571 2.857 1.714 1.47945205

1 1 1.12328767

( )( ) ( )
( ) ( )

863024706160

90

...
1D|2XP1D|1XP

1D|2X1XP1D|.XPf

=+=
==+===

==∪====
( ) ( )( )

( )( )
57142860674104

90
9090

...
.XP1,D|2Xf]1D2,X|E[Y

.XP1,D|1Xf]1D1,X|E[Y]1D,.XP|E[Y

1

11

=⋅+⋅=
===⋅==+

===⋅=====
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Propensity Score 
needs to estimated in practice 

Probit-Modell:

Logit Model:

Matching on the Propensity Score (IV)

( ) ( ) ( )kk110k1 Xβ,...,XββΦX,...,X|1DPXP ⋅⋅+===

( ) ( )
))Xβ,...,Xββ(exp(1

1X,...,X|1DPXP
kk110

k1 ⋅⋅+−+
===
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In Propensity Score Matching we (again) have several 
alternative ways in which matching can be performed

• Blockwise Matching

• k-nearest neighbor matching

• Kernel matching

• Caliper Matching

Warning: The following formulas pretend that Propensity 
Score is known. In practice, it needs to be estimated

How matching is performed
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Blockwise Matching on the Propensity Score

For the 1st block:

Propensity Score Matching 

∑∑
∈∈

⋅−⋅=
I(1)  j

0j
01I(1)  i

1i
11

^
S

1 Y
n
1Y

n
1ATOT

P(X)

density of P(X) for 
D=0 density of P(X) for 

den D=1

52 3 41

all treatment group members in 1st block

Average of  Y among D = 0 in 
1st Propensity Score-block
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For all Q blocks:

Variance of this estimator

Propensity Score Matching - Blockwise Matching

∑
∑

∑
∀

∈

=

⋅=

i
i

I(q)  i
iQ

1q

S
q

^
S

D

D
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This assumes  that the Propensity Score is known.
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K-nearest-neighbor matching

Propensity Score Matching
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Variance of the k-NN estimator 

Propensity Score - K-NN Matching
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Kernel Matching on Propensity Score
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Propensity Score Matching
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For each control variable X:

Standardized Bias prior to Matching

Standardized Bias after Matching

Checking match quality

( )
( ) ( )[ ]XVarXVar0,5

XX100SB
01

01
before +⋅

−
⋅=

( )
( ) ( )[ ]XVarXVar0,5

XX100SB
0M1M

0M1M
after +⋅

−
⋅=
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Rajeev H. Dehejia and Sadek Wahba

"Causal Effects in Non-Experimental Studies: Re-
Evaluating the Evaluation of Training Programs“
Journal of the American Statistical Association, Vol. 94, 
Number 448 (December 1999), pp. 1053-1062

PROPENSITY SCORE-MATCHING METHODS FOR
NONEXPERIMENTAL CAUSAL STUDIES
The Review of Economics and Statistics, February 2002, 
84(1): 151–161

Dehejia and Wahba (1999,2002)
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Example: Causal Effect of the NSW program
National Supported Work (NSW) Demonstration project
• Aim: provide work experience (6-18 months) for individuals with 

economic and social problems

• Four target groups: 
• Women on Aid to Families with Dependent Children (AFDC)
• former addicts
• former offenders
• young school dropouts.

• Randomized treatment:
Candidates were selected on the basis of eligibility criteria and 
then randomly assigned to the program.

• Outcome: 
Real annual earnings in 1978
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“Evaluating the Econometric Evaluations of Training Programs with 
Experimental Data“

1. Estimate causal effect by comparing outcomes of experimental 
treatment and control group

2. Use survey data to form a non-experimental control group

3. Using experimental treatment group + nonexperimental control 
group + econometrics (OLS, IV, etc.): can experimental estimate of 
causal effect be replicated?

Lalonde: “This comparison shows that many of the econometric procedures 
do not replicate the experimentally determined results, and it 
suggests that researchers should be aware of the potential for 
specification errors in other nonexperimental evaluations.”

Heckman & Hotz (1989): A reanalysis of the NSW data reveals that a 
simple testing procedure eliminates the range of nonexperimental 
estimators at variance with the experimental estimates of program 
impact 

LaLonde (AER 1986): 
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Dehejia and Wahba (1999, 2002)

D&W reanalyze the NSW data and find: 

the right nonexperimental method (Propensity Score 

matching) is getting the right answer!

Sample: 

“The data we use are a subsample of the data used in LaLonde (1986). 

Using the LaLonde male sample of 297 treated and 425 control units, we 

exclude the observations for which (pre-treatment) earnings in 1974 could 

not be obtained, thus arriving at a reduced sample of 185 treated 

observations and 260 control observations.”



78

Dehejia and Wahba (2002)
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Dehejia and Wahba (1999, 2002)
Nonexperimenta control-group for matching analysis are 
constructed from

CPS:
The Current Population Survey is a monthly survey of households 
conducted by the Bureau of Census for the Bureau of Labor Statistics.

PSID:
The Panel Study of Income Dynamics (PSID), begun in 1968, is a 
longitudinal study of a representative sample of U.S. individuals 
(men, women, and children) and the family units in which they 
reside.
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Dehejia and Wahba (1999)
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A Simple Algorithm for Estimating the Propensity Score
1. Start with a parsimonious logit specification
2. Sort data according to estimated propensity score 
3. Stratify observations such that estimated propensity scores within a 

stratum for treated and comparison units are close
4. Statistical test: for all covariates, differences in means across treated 

and comparison units within each stratum are not significantly different 
from zero.

a) If covariates are balanced between treated and comparison 
observations for all strata, stop.

b) If covariates are not balanced for some stratum, divide the stratum 
into  finer strata and reevaluate.

c) If a covariate is not balanced for many strata, modify the logit by 
adding interaction terms and/or higher-order terms of the covariate 
and reevaluate.

Dehejia and Wahba (1999,2002)
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Propensity Score Estimation via Logit Model:

X-variables: age, age2, educ, educ2, married no degree, 
black, Hispanic, RE74, RE75, RE742, RE752,U74, U75, 
U74*black (for model with PSID control group).

Dehejia and Wahba (1999,2002)

( ) ( )

)Xβ...Xββ(
))Xβ...Xββ(exp(1

1X,...,X|1DPXP

kk110

kk110
k1

⋅++⋅+=

⋅++⋅+−+
===

F

( ) MLEs areβ̂...,,β̂,β̂ where)Xβ̂...Xβ̂β̂(XP̂ k10kik1i10i ⋅++⋅+= F
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How good is the matching?
11168 (of 15992) of the CPS obs and 1254 (of 2490) of 
the PSID obs have estimated propensity scores less 
than the minimum estimated propensity score for the 
treated units. 
Most of the remaining comparison obs (4398 for the CPS 
and 1007 for the PSID) are in the first bin of sorted 
propensity scores.
In the NSW-PSID sample, many of the upper bins have 
far more treated units than comparison units.

“Hence, it is clear that very few of the comparison units 
are comparable to the treated units.“ 

Dehejia and Wahba (2002)
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“Three issues arise in implementing matching: 

1. whether or not to match with replacement, 
2. how many comparison units to match to each treated 

unit
3. which matching method to choose.

Dehejia and Wahba (2002)
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1. Whether or not to match with replacement? 

Matching with replacement minimizes the propensity 
score distance between the matched comparison units 
and the treatment unit: each treatment unit can be 
matched to the nearest comparison unit, even if a 
comparison unit is matched more than once. This is 
beneficial in terms of bias reduction. 

Dehejia and Wahba (2002)



87

1. Whether or not to match with replacement?

“In contrast, by matching without replacement,
when there are few comparison units similar to the 
treatedunits, we may be forced to match treated units to 
comparison units that are quite different in terms of the 
estimated propensity score. This increases bias, but it 
could improve the precision of the estimates. An 
additional complication of matching without replacement 
is that the results are potentially sensitive to the order in 
which the treatment units are matched.“

Dehejia and Wahba (2002)
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2. How many comparison units to match?

“By using a single comparison unit for each treatment 
unit, we ensure the smallest propensity-score distance 
between the treatment and comparison units. 

By using more comparison units, one increases the 
precision of the estimates, but at the cost of increased 
bias. One method of selecting a set of comparison units 
is the nearest-neighbor method, which selects the m
comparison units whose propensity scores are closest to 
the treated unit in question.“

Dehejia and Wahba (2002)
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3. Which matching method to choose?

One method of selecting a set of comparison units is the 
nearest-neighbor method, which selects the m
comparison units whose propensity scores are closest to 
the treated unit in question.

Another method is caliper matching, which uses all of 
the comparison units within a predetermined propensity 
score radius (or “caliper”). A benefit of caliper matching 
is that it uses only as many comparison units as are 
available within the calipers, allowing for the use of extra 
(fewer) units when good matches are (not)available.“

Dehejia and Wahba (2002)
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Empirical results

Dehejia and Wahba (2002)

the treated units are ranked (from 
lowest to highest or highest to lowest 
propensity score, or randomly).



91

Empirical results

Dehejia and Wahba (2002)
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Conclusions

It is something of an irony that the data that we use were
originally employed by LaLonde (1986) to demonstrate 
the failure of standard nonexperimental methods in 
accurately estimating the treatment effect. Using 
matching methods on both of his samples, we are able 
to replicate the experimental benchmark …. in a setting 
in which the treated group differs substantially from the 
pool of potential comparison units. The method is able to 
pare the large comparison group down to the relevant 
comparisons “

Dehejia and Wahba (2002)
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Jeffrey A. Smith and Petra E. Todd “Does matching overcome 
LaLonde’s critique of nonexperimental estimators?“
Journal of Econometrics 125 (2005) 305–353

“This paper applies cross-sectional and longitudinal propensity score 
matching estimators to data from the National Supported Work (NSW) 
Demonstration that have been previously analyzed by LaLonde (1986) 
and Dehejia and Wahba (1999, 2002). 

We find that estimates of the impact of NSW based on propensity score 
matching are highly sensitive to both the set of variables included in the 
scores and the particular analysis sample used in the estimation. 

Among the estimators we study, the difference-in-differences matching 
estimator performs the best. ….. Our analysis demonstrates that while 
propensity score matching is a potentially useful econometric tool, it does 
not represent a general solution to the evaluation problem.

Smith and Todd
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„ Sources of selection bias in evaluating social programs: An interpretation of 
conventional measures and evidence on the effectiveness of matching as a 
program evaluationmethod” 
Proc Natl Acad Sci U S A. 1996 November 12; 93(23): 13416–13420.

Using data from a recent social experiment, … We find that matching 
based on the propensity score eliminates some but not all of the 
measured selection bias, with the remaining bias still a substantial 
fraction of the estimated impact. 

We find that the support of the distribution of propensity scores for 
the comparison group is typically only a small portion of the support 
for the participant group. 

For values outside the common support, it is impossible to reliably 
estimate the effect of program participation using matching methods.

Heckman, Ichimura, Smith and Todd (1996)
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Exploiting CIA
- Regression
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( ) ( )[ ]X0,D|YEX1,D|YEE 011D |X =−== =

Recall
Average Treatment Effect 

Average Treatment Effect on the Treated

ATE and ATOT under conditional mean independence

( ) ( )01 YEYEATE −=

( ) ( )[ ]X|YEX|YEE 01X −=

( ) ( )[ ]X0,D|YEX1,D|YEE 01X =−==

Law of iterated expectations 
(holds in general)

( ) ( )1D|YE1D|YEATOT 01 =−==

requires mean 
independence

( ) ( )[ ]X1,D|YEX1,D|YEE 011D |X =−== =

( ) ( )[ ]X0,D|YEE-1D|YE 01D |X1 === =
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Special Case: Linear relationships

ATE(x), ATOT(x) and Regression Notation
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Under the CIA assumption

CIA and Linearity (I)

[ ] [ ] [ ]X|YEX0,D|YEX1,D|YE 111 ====
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Under the CIA assumption

In general,

Under CIA and linearity

Alternatively for ATOT

CIA and Linearity (II)
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These estimators use the data more efficiently than the 
nonparametric matching estimators. Indeed, if we further 
assume that β1= β0 then we can use OLS to estimate

The OLS estimator of the coefficient of D is a consistent 
estimator of ATOT and ATE.

CIA and Linearity (III)
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However, these estimators may rely heavily on extrapolation. 

Counterfactuals are obtained straight from linearity

CIA and Linearity (III)
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Example (continued)

Estimating the Labor Market Impact of Voluntary 
Military Service Using Social Security Data on 
Military Applicants

Joshua D. Angrist
Econometrica, Vol. 66, No. 2. (Mar., 1998), pp. 249-288.

Angrist (1998)
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Angrist‘s almost saturated regression estimates

Angrist (1998)
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Angrist (1998)

“Difference in Means”
= Naïve estimates

“Controlled Contrasts“
= Matching via Stratification

„Regression Estimates“
= Almost saturated 
Regression
(see equation (17) on prev. slide)
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Angrist (1998)

Comparing matching and regression estimates:

Why are they different after 1984? Because they put 
different weights on conditional contrasts (see also next slide )
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Matching vs. OLS-Regression
For the simple case of a binary X-variable Angrist shows that 

“the difference between matching and OLS is in the nature of the 
weights (of contrasts) at values of x where both veterans and 
nonveterans are observed. 

Matching weights each of the underlying treatment effects by P[D= 1 
I X ] P [ X ] ,whereas OLS regression weights each of the underlying 
treatment effects by P[D= 1 IX](1 -P[D= 1 I X ] )P [ X ]. 

In other words, the weights underlying matching are proportional to 
the probability of veteran status at each value of the covariates while 
the weights underlying OLS regression are proportional to the 
variance of veteran status at each value of the covariates.“

Matching puts more weights on ATOT(x) if x values are important 
in treatment group, OLS on those x with a larger variance of D.

Angrist (1998)
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Angrist & Pischke:

“We believe regression should be the starting point for 
most empirical projects… The first reason why we don’t 
find ourselves on the propensity score bandwagon are 
practical: there are many details to be filled in when 
implementing propensity score matching, such as how to 
model the score and how to do inference; these are 
details not yet standardized.”

Matching vs. Regression
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Angrist & Pischke (p.86):

“Moreover, ..there isn’t very much theoretical daylight 
between regression and propensity score weighting. If 
the regression model for covariates is fairly flexible, say, 
close to saturated, regression can be seen as a type of 
propensity score weighting, so the difference is mostly in 
the implementation.”

Matching vs. Regression
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Heckman Nobel Lecture - MICRODATA, 
HETEROGENEITY AND THE
EVALUATION OF PUBLIC POLICY

“If there were no unobservables, or if fortuitously 
conditioning on X eliminated mean differences in 
unobservables, as is assumed by statisticians who
advocate the method of matching, then the selection 
bias term vanishes. Yet the poor fit of most microdata 
equations suggests that the assumption of no 
unobservables is unacceptable. Reliance on matching is 
an act of faith.”

Anti-CIA(Matching)Heckman Nobel Lecture

[ ] [ ] [ ] 0X|UEX1,D|UEX0,D|UE:CIA 000 =====
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Guido Imbens 

“In the debate (about the plausibility of the CIA) 
it has been argued that agents’ optimizing 
behavior precludes choices being independent 
of the potential outcomes. This seems an 
unduly narrow view. In response I will offer 
three arguments for considering
these assumptions…..“
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Guido Imbens 
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Guido Imbens 
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Guido Imbens 
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